Semi-Supervised Policy Initialization for Playing Games with Language Hints

UC Santa Barbara

Tsu-Jui Fu

William Wang

https://tsujuifu.github.io/pubs/naacl21_ssi.pdf

Playing Games with Language Hint

- Most RL methods rely on exploration and maximization the reward
- A common setting is only to give out the **achieved signal**
 - Reward is **1 if achieved**, otherwise 0
 - The **sparse-reward** makes the agent difficult to learn

Playing Games with Language Hint

- Most RL methods rely on exploration and maximization the reward
- A common setting is only to give out the **achieved signal**
- Language hint can be seen as an additional dense-reward
 - If agent's **actions correlate** with the given hint

Playing Games with Language Hint

- Conducted tasks in the experiments
 - 45 tasks under Atari Montezuma's Revenge
 - Each task contains **starting state**, unknown **final goal**, and **a given hint**

Baseline: ExtLang

- [IJCAI'19] Using Language for Reward Shaping in Reinforcement Learning
- Collect human demo clips to learn the correlation between action and hint

Baseline: ExtLang

- [IJCAI'19] Using Language for Reward Shaping in Reinforcement Learning
- Collect human demo clips to learn the correlation between action and hint
- Apply **reward**_{env} and **reward**_{hint} during task-training
 - **Reward**_{hint} is provided each action ([0~1] as **dense**-reward)

https://www.ijcai.org/Proceedings/2019/331

How about Latent Hints?

- Each task contains **only one** given hint, which is **incomplete**
 - Those latent hints rely on exploring the environment
 - Still suffer from sparse-reward issue

How about Latent Hints?

- Each task contains **only one** given hint, which is **incomplete**
- Semi-Supervised Initialization (SSI)
 - Enable agent to **experience various possible hints** in advance
 - Can have a **better-initialized policy** during task-training

- 1. Hint module *H* generates possible hints *I* for random state *s*
- 2. Policy module **P** rollouts and steps actions **a**
- 3. Reward module **R** updates **P** based on (**a**, **I**)
- 4. Different *s* to *H* let *P* learn from different possible *I*
- 5. *P* serves as better-initialized during further **task-training**

https://tsujuifu.github.io/pubs/naacl21_ssi.pdf

- 1. Hint module *H* generates possible hints *I* for random state *s*
 - Adopt CNN to extract visual feature from *s* and GRU to decode *I*
 - **H**: **I** = GRU(CNN(*s*))
 - *H* is pre-trained on collected human demo clips

- 1. Hint module *H* generates possible hints *I* for random state *s*
- 2. Policy module **P** rollouts and steps actions **a**
 - Recurrent action selector to step a_t for s_t
 - $\circ \quad \mathbf{P}: \mathbf{a}_t = \mathrm{GRU}(\mathbf{s}_t \mid \mathbf{h}_t)$

- 1. Hint module *H* generates possible hints *I* for random state *s*
- 2. Policy module **P** rollouts and steps actions **a**
- 3. Reward module **R** updates **P** based on (**a**, **I**)
 - **R** provides correlation between **a** and **I**
 - **R**: **r** ([0~1]) = Binary Classifier(**a**, **I**)
 - Update **P** to maximize **r** via PPO

- 1. Hint module *H* generates possible hints *I* for random state *s*
- 2. Policy module **P** rollouts and steps actions **a**
- 3. Reward module **R** updates **P** based on (**a**, **I**)
- 4. Different **s** to **H** let **P** learn from different possible **I**
- 5. *P* serves as better-initialized during further **task-training**
 - Similar to ExtLang, optimize by both reward_{env} and reward_{hint}

Experiments (ExtLang-SSI vs ExtLang)

- Success Rate
 - ExtLang-SSI has **higher suc. rate** under the **same training step**
 - **11% relative improvement** of final policy

Experiments (ExtLang-SSI vs ExtLang)

- Success Rate
- Accumulated Success Episodes
 - ExtLang-SSI learns faster (420K steps vs 500K for 2.7K episodes)
 - **1.2x speed up** during task-training

Experiments (ExtLang-SSI vs ExtLang)

- Success Rate
- Accumulated Success Episodes
- Task Study
 - ExtLang has 35% for task 5 but ExtLang-SSI achieves using only 100K steps
 - ExtLang almost fails for task 7 but ExtLang-SSI finally reach 40%

Qualitative Results of Hint Module

• Policy module can learn from **latent but useful hints** generated by hint module

climb down the ladder and jump over

wait at the bridge appears and jump to the ledge

climb down the ladder and jump once while going left

