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Playing Games with Language Hint

e Most RL methods rely on exploration and maximization the reward

e A common setting is only to give out the achieved signal
o Rewardis 1if achieved, otherwise O
o The sparse-reward makes the agent difficult to learn
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Playing Games with Language Hint

e Most RL methods rely on exploration and maximization the reward
e A common setting is only to give out the achieved signal

e Language hint can be seen as an additional dense-reward
o If agent’s actions correlate with the given hint
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Playing Games with Language Hint

e Conducted tasks in the experiments
o 45 tasks under Atari Montezuma’s Revenge
o Eachtask contains starting state, unknown final goal, and a given hint



Baseline: ExtLang

e [IJCAI'19]Using Language for Reward Shaping in Reinforcement Learning

e Collect human demo clips to learn the correlation between action and hint
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Baseline: ExtLang

e [IJCAI'19]Using Language for Reward Shaping in Reinforcement Learning

e Collect human demo clips to learn the correlation between action and hint
e Applyreward_  andreward, . duringtask-training
o Reward,.  is provided each action ([0~1] as dense-reward)
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How about Latent Hints?

e FEachtask contains only one given hint, which is incomplete
o Those latent hints rely on exploring the environment
o Still suffer from sparse-reward issue
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How about Latent Hints?

e FEachtask contains only one given hint, which is incomplete

e Semi-Supervised Initialization (SSI)
o Enable agent to experience various possible hints in advance
o Can have a better-initialized policy during task-training
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Semi-Supervised Initialization (SSl)

Hint module H generates possible hints | for random state s
Policy module P rollouts and steps actions a

Reward module R updates P based on (a, I)
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Semi-Supervised Initialization (SSl)

1. Hint module H generates possible hints | for random state s
o Adopt CNN to extract visual feature from s and GRU to decode |
o H:1=GRU(CNN(s))

o His pre-trained on collected human demo clips
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Semi-Supervised Initialization (SSl)

1. Hint module H generates possible hints | for random state s

2. Policy module P rollouts and steps actions a

o Recurrent action selector to step a fors,

o P:a,=GRU(s | h)
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Semi-Supervised Initialization (SSl)

1. Hint module H generates possible hints | for random state s

2. Policy module P rollouts and steps actions a

3. Reward module R updates P based on (a, I)
R provides correlation betweena and |
R: r ([0~1]) = Binary Classifier(a, I)
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Semi-Supervised Initialization (SSl)

Hint module H generates possible hints | for random state s
Policy module P rollouts and steps actions a

Reward module R updates P based on (a, I)
Semi-Supervised Initialization

Different sto H let P learn from different

pOSSible | go left and jump

once while going

P serves as better-initialized during

further task-training Turther train ) :
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Experiments (ExtLang-SSI vs ExtLang)

Success Rate
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ExtLang-SSI has higher suc. rate
under the same training step

11% relative improvement of
final policy
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Experiments (ExtLang-SSI vs ExtLang)

e Success Rate

e Accumulated Success Episodes
o ExtLang-SSl learns faster (420K
steps vs 500K for 2.7K episodes)
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Experiments (ExtLang-SSI vs ExtLang)

e Success Rate

e Accumulated Success Episodes

e Task Study

O

ExtLang has 35% for task 5
but ExtLang-SSl achieves using
only 100K steps

ExtLang almost fails for task 7
but ExtLang-SSI finally reach 40%
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Qualitative Results of Hint Module

e Policy module can learn from latent but useful hints generated
by hint module
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