

ULN: Towards Underspecified Vision-and-Language Navigation

Weixi Feng Tsu-jui Fu Yujie Lu UC Santa Barbara

William Wang

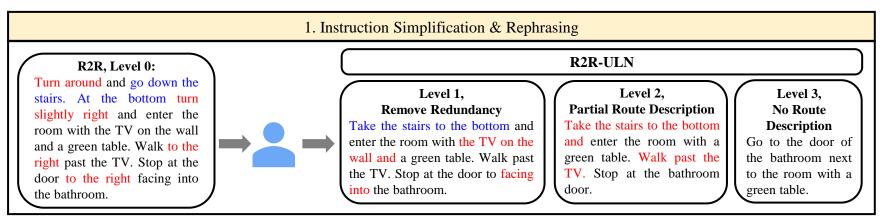
Vision-and-Language Navigation

- The embodied agent navigates to a target location by following human language instructions.
 - Instruction understanding
 - Alignment between linguistic semantics and visual observation

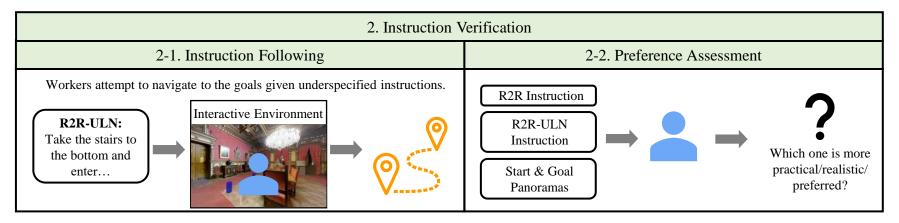
Turn around and go down the stairs. At the bottom turn slightly right and enter the room with the TV on the

Problems & Motivation

- Many existing VLN datasets consist of low-level instructions that describe every single step for the agent.
 - R2R, R4R, RxR
- Agents are usually trained on a single type of instructions and may not generalize well in real applications
 - Low-level datasets
 - High-level datasets: REVERIE, SOON
- In reality, users tend to omit some details when instructing robot in an indoor environment.
- Evaluate agents with **multi-level underspecified** instructions to probe their generalization to language variations.



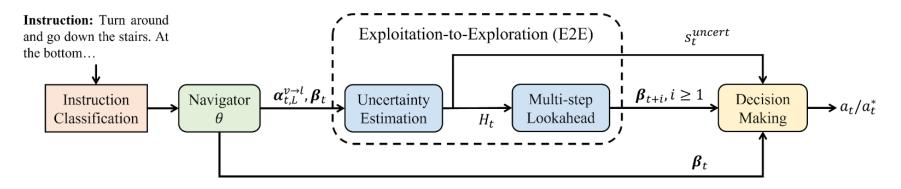
- A new evaluation dataset, i.e., R2R-ULN
- A model-agnostic framework to improve performance on underspecified instructions.


Approach

Data Collection

Approach

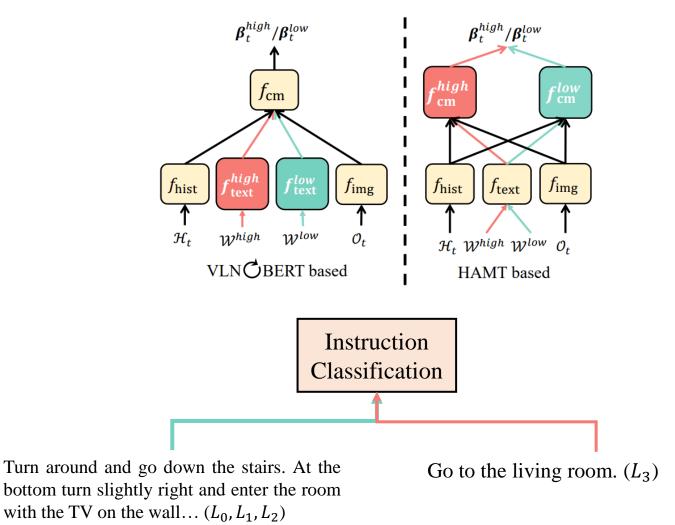
Data Collection



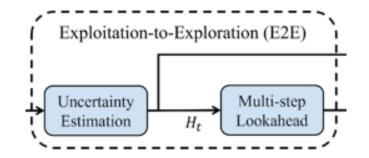
Dataset Statistics

Number of:	R2R	R2R-ULN			
Number of.	LO	L1	L2	L3	
Instructions	1622	3282	3282	3282	
Paths	917	917	917	917	
Tokens	38.6	27.3	18.9	8.7	
Direction Tokens	2.5	1.1	0.7	0.2	
Object Tokens	8.5	6.6	4.6	2.6	

	R2R-ULN Val-Unseen					
Level	Instr. Following		Instr. Preference			
	SR↑	SPL↑	Practicality	Efficiency		
L_0	86	72	-	-		
L_1	82	68	55%	57%		
L_2	82	65	63%	59%		
L_3	75	58	68%	66%		


Model-Agnostic Framework

- A hybrid navigation agent
- Exploitation-to-Exploration: multi-step lookahead



Agent: Granularity-Specific Subnetworks

Office/Department/Division Name

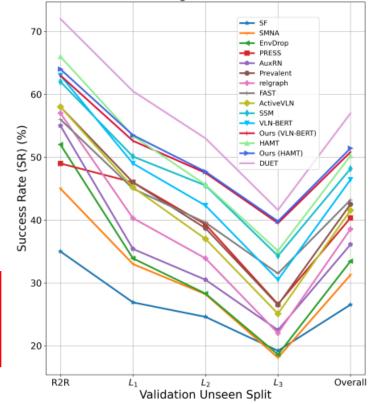
E2E: Multi-Step Lookahead

• Uncertainty Estimation: A two-layer network to predict step-wise uncertainty score based on cross-attention weights $\alpha_{t,L}^{v \to l}$ and decision logits β_t

$$s_t^{\text{uncert}} = f_{\text{uncert}}([\boldsymbol{\alpha}_{t,L}^{v \to t}; \boldsymbol{\beta}_t]).$$

Multi-step Lookahead: Active explore the future steps when the agent is uncertain:

$$a_t^* = \arg\max_c \left[\beta_{t,c} + \sum_{i=1}^K \gamma^i \max_{c'} (\beta_{t+i,c'})\right].$$


UC SANTA BARBARA

Office/Department/Division Name

Experimental Results

	Methods	R2R-ULN Val-Unseen			
	wethods		NE↓	SR↑	SPL↑
0	Human	14.97	2.94	77.4	61.7
	Greedy-Decoding Agents				
1	Speaker-Follower (Fried et al., 2018)	14.86	8.43	22.0	17.4
3	EnvDrop (Tan et al., 2019)	8.74	8.26	24.6	23.3
4	PREVALENT (Hao et al., 2020)	11.91	7.28	33.8	31.1
	Exploration-based Agents				
6	FAST-Short (Ke et al., 2019)	22.89	6.78	36.8	26.4
7	Active VLN (Wang et al., 2020)	19.40	7.08	32.2	21.2
8	SSM (Wang et al., 2021)	26.64	6.70	39.8	26.1
9	VLN OBERT (Hong et al., 2021)	13.00	6.47	39.3	35.0
11	Ours (VLN CBERT-based, w/ E2E)	23.02	6.13	44.7	29.7
12	HAMT (Chen et al., 2021a)	12.98	6.33	41.7	37.6
14	Ours (HAMT-based, w/ E2E)	28.31	6.05	44.6	25.9

Office/Department/Division Name

- Paper: <u>https://arxiv.org/abs/2210.10020</u>
- Dataset & Code: <u>https://github.com/weixi-feng/ULN</u>

