M³L: Language-based Video Editing via Multi-Modal Multi-Level Transformer

Tsu-Jui Fu

Xin Wang

Scott Grafton

Miguel Eckstein

William Wang

UC Santa Barbara

Visual Editing using Natural Language

• Visual editing applications (Photoshop/Premiere) are widely used but difficult for novices

Visual Editing using Natural Language

- Visual editing applications (Photoshop/Premiere) are widely used but difficult for novices
- People can edit directly using language and improve accessibility

Language-based Video Editing (LBVE)

- Edit a source video S into the target video O, guided by an instruction X
 - Scenario of S is preserved, instead of completely different
 - Semantic of O is presented differently, controlled by X

- Input: Source $S = \{s_1, s_2, ..., s_N\}$, Instruction X
- **Output: Target** $O = \{o_1, o_2, ..., o_N\}$

- Input: Source $S = \{s_1, s_2, ..., s_N\}$, Instruction X
- **Output: Target** $O = \{o_1, o_2, ..., o_N\}$
- Linguistic Feature: $\{e_x, e_w\}$ = RoBERTa(X)
- Frame Feature: $\{v_1, v_2, ..., v_N\}$ =3D ResNet($\{s_1, s_2, ..., s_N\}$)

- Input: Source $S = \{s_1, s_2, ..., s_N\}$, Instruction X
- **Output: Target** $O = \{o_1, o_2, ..., o_N\}$
- Linguistic Feature: $\{e_x, e_w\}$ = RoBERTa(X)
- Frame Feature: $\{v_1, v_2, ..., v_N\}$ =3D ResNet($\{s_1, s_2, ..., s_N\}$)
- $M^{3}L: d_{i} = T(\{o_{1}, ..., o_{i-1}\} | v^{s}, \{e_{x}, e_{w}\})$
 - Encoder: $f_i^s = GF(LF(v^s, e_w), e_x)_i$
 - **Decoder**: $f_i^o = \text{LF}(\text{GF}(v^o, e_X | f^{\circ})_i, e_w)$

- Input: Source $S = \{s_1, s_2, ..., s_N\}$, Instruction X
- **Output: Target** $O = \{o_1, o_2, ..., o_N\}$
- Linguistic Feature: $\{e_x, e_w\}$ = RoBERTa(X)
- Frame Feature: $\{v_1, v_2, ..., v_N\}$ =3D ResNet($\{s_1, s_2, ..., s_N\}$)
- $M^{3}L: d_{i} = T(\{o_{1}, ..., o_{i-1}\} | v^{s}, \{e_{x}, e_{w}\})$
 - Encoder: $f_i^s = GF(LF(v^s, e_w), e_x)_i$
 - **Decoder**: $f_i^o = \text{LF}(\text{GF}(v^o, e_X | f^s)_i, e_w)$
- Frame Generation: $o_i = U(d_i)$

Multi-Level Fusion

- Both video and language are multi-level conveyed
- Follow multi-head attention (MHA)
 - Local-level Fusion (LF): single frame \leftrightarrow word token
 - **Global-level Fusion (GF)**: video sequence \leftrightarrow whole instruction

Learning of M³L

- Editing Loss L_E : MSE (o_i, o_i')
- Dual Discriminator (D)
 - Frame Quality: $\log(1-D_{a}(o_{i}))$
 - Temporal Consistency: $\log(1-D_t(\{o_i', ..., o'_{i+k'}\}))$

```
Initialize T, U, D
while TRAINING do
    \{v_1, ..., v_N\} = 3D \operatorname{ResNet}(S)
    e_X, \{e_{w_1}, \dots, e_{w_N}\} = \text{RoBERTa}(X)
    for i \leftarrow 1 to N do
                                                \triangleright teacher-forcing training
         d_i \leftarrow T(\{o_1, ..., o_{i-1}\} | v, \{e_X, e_w\})
                                                                          ⊳ Eq. 7
         \hat{o}_i \leftarrow U(d_i)
         \mathcal{L}_E \leftarrow visual difference loss with O
                                                                          ⊳ Eq. 9
         \mathcal{L}_G \leftarrow video quality loss from D
                                                                         ⊳ Eq. 10
         Update T and U by minimizing \mathcal{L}_G + \mathcal{L}_E
          \mathcal{L}_D \leftarrow \text{discrimination loss for } D
                                                                         ⊳ Eq. 11
         Update D by maximizing \mathcal{L}_D
    end for
end while
```


Dataset

M-MNIST

"change the direction from lower left to upper right and the number from 5 to 0"

M-CLEVR

ŀ

"move to the **right front** and change the **large blue rubber into the small yellow metal**"

E-JESTER

"makes a **cup gesture** and **turns his hand in a circle**"

• Collected Dataset

Dataset	# Train / Test	# Frame	# Word	Resolution
M-MNIST	11,070/738	354,240	16.0	64x64
M-CLEVR	10,133/729	217,240	13.4	128x128
E-JESTER	14,022/885	59,508	9.9	100x176

- Collected Dataset
- Baselines: concatenate linguistic feature with visual feature for LBVE
 - **pix2pix: frame-by-frame** video translation
 - vid2vid: video-to-video synthesis with temporal discriminator
 - E3D-LSTM: CNN-LSTM for video prediction

pix2pix: [CVPR'17] Image-to-Image Translation with Conditional Adversarial Networks
 vid2vid: [NeurIPS'18] Video-to-Video Synthesis
 E3D-LSTM: [ICLR'19] Eidetic 3D LSTM: A Model for Video Prediction and Beyond

- Collected Dataset
- Baselines
- Evaluation Metrics
 - VAD: video feature distance with ground-truth O
 - **OA: object accuracy** in generated O'
 - mIoU: mean intersection over union between O and O'
 - **GA: gesture accuracy** of generated E-JESTER O'

- Quantitative Results
 - pix2pix: **insufficient video temporal**
 - vid2vid & E3D-LSTM: lack of explicit cross-modal modeling
 - M³L: incorporate **multi-level fusion** to achieve the best performance

	M-MNIST		M-CLEVR			E-JESTER		
Method	VAD↓	OA ↑	mloU ↑	VAD↓	OA ↑	mloU ↑	VAD↓	GA ↑
pix2pix	3.05	87.7	64.1	2.84	80.4	60.5	2.00	8.6
vid2vid	2.30	87.5	77.9	2.21	80.5	69.3	1.62	82.0
E3D-LSTM	<u>2.10</u>	<u>90.4</u>	<u>81.3</u>	<u>2.11</u>	<u>83.1</u>	<u>72.2</u>	<u>1.55</u>	<u>83.6</u>
M ³ L	1.90	93.2	84.7	1.96	84.5	78.4	1.44	89.3

- Ablation Study
 - Instruction is necessary for controllable video editing
 - Multi-level Fusion (MLF) further benefits cross-model modeling

Ablation Se	ettings	E-JESTER		
Instruction	MLF	VAD↓	GA ↑	
×	×	1.99	4.7	
~	×	<u>1.50</u>	<u>85.4</u>	
V	~	1.44	89.3	

- Ablation Study
- Zero-shot Generalization: blue square + red circle \rightarrow blue circle
 - Filter ¹⁰/₄₀ number-direction combinations for M-MNIST
 - Filter ${}^{12}/{}^{40}_{96}$ size-color-material-shape combinations for M-CLEVR
 - MLF helps generalization even training with zero-shot examples

Ablation	M-MNIST				M-CLEVR		
MLF	VAD↓	OA ↑	mloU ↑	VAD↓	OA ↑	mloU ↑	
×	2.64	82.6	73.6	2.32	70.1	66.6	
~	2.35	87.5	79.1	2.29	76.7	71.5	

- Ablation Study
- Zero-shot Generalization
- Human Evaluation

	w/ MLF	w/o MLF	Tie
Video Quality	67.1%	27.1%	5.8%
Video-Instruction Align.	53.3%	35.1%	11.6%
Simil. to GT Video	59.6%	28.9%	11.6%

Qualitative Examples

"change the number to 2"

"move to the **front** and change the small cyan metal sphere into the **large yellow rubber cube**"

SourceIIIIGround
TruthIIIIOursIIIII

"change the direction from upper right to lower right and the number from 1 to 8"

"change the brown metal sphere into the **blue** rubber cube and move it to the **left**"

"uses **two fingers** to **raise a line** with his **right hand**"

"motions her right hand from left to right while showing two fingers"

Qualitative Examples

"change the number to 3"

"change the number from 1 to 2 and the direction from upper left to upper right"

"move to the **left front** and change the large yellow cylinder into the **small purple cube**"

"move to the **left front** and change the large purple into the **small gray**"

"rotates and swipes her right hand from left to right"

"raising and opening the index and thumb fingers"