H-FND: Hierarchical False-Negative Denoising for Distantly Supervision Relation Extraction

Jhin-Wei Chen, Tsu-Jui Fu, Chen-Kang Lee and Wei-Yun Ma

Findings ACL-IJCNLP 2021
Challenges in Information Extraction

- The lack of labeled data
- Labeling data is very expensive and time consuming

Distant supervision was proposed to generate training data by aligning triples in knowledge bases to unannotated sentences.
Noise from Distantly Supervised Relation Extraction Datasets

<table>
<thead>
<tr>
<th>Knowledge base</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steve Jobs, San Francisco</td>
<td>PoB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Relation</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jobs was born in San Francisco</td>
<td>PoB (✓)</td>
<td>TP</td>
</tr>
<tr>
<td>Jobs moved back to San Francisco</td>
<td>PoB (✗)</td>
<td>FP</td>
</tr>
<tr>
<td>Manuela was born in New York</td>
<td>NA (✗)</td>
<td>FN</td>
</tr>
</tbody>
</table>
The Ternary Policy of the Agent

To retrieve positive instance from negative samples

For each negative sample s in the dataset:

- **Keep**: maintain s as a negative instance for training/validation
- **Discard**: remove s to prevent it from misleading the model
- **Revise**: predict a new relation type for s and treat it as a positive for the following training/validation.
The H-FND Framework
Experiments on Synthetic Noise

![Graphs showing F1 score vs. FN ratio for CNN and PCNN on SemEval and TACRED datasets.](image)
Experiment on Distantly Supervised Dataset

CNN On NYT

PCNN On NYT