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Abstract

This paper aims to address the video summarization
problem via attention-aware and adversarial training. We
formulate the problem as a sequence-to-sequence task,
where the input sequence is an original video and the output
sequence is its summarization. We propose a GAN-based
training framework, which combines the merits of unsuper-
vised and supervised video summarization approaches. The
generator is an attention-aware Ptr-Net that generates the
cutting points of summarization fragments. The discrimi-
nator is a 3D CNN classifier to judge whether a fragment
is from a ground-truth or a generated summarization. The
experiments show that our method achieves state-of-the-art
results on SumMe, TVSum, YouTube, and LoL datasets with
1.5% to 5.6% improvements. Our Ptr-Net generator can
overcome the unbalanced training-test length in the seq2seq
problem, and our discriminator is effective in leveraging
unpaired summarizations to achieve better performance.

1. Introduction
The task of video summarization is to produce a short-

ened video clip that conveys the gist of its original longer
version. Applications of video summarization include video
highlight for sports games, movie recaps, and rare event de-
tection in video logs for efficient browsing, etc.

Image features of various characteristics at different lev-
els have been used in video summarization, for example,
low-level visual consistency [4, 23] and high-level seman-
tic changes [16, 36]. The video summarization method of
[25] uses a pre-trained CNN model to extract image features
and then performs clustering for keyframe selection.

On the other hand, recurrent neural networks (RNNs),
in particular, long short-term memory (LSTM) units [13]
are widely used to model and memorize sequential data.
A video can be considered as a long image sequence, and
LSTM has shown to be capable of deciding whether the cur-
rent frame is a keyframe given the information of previous
frames [8, 40].

AVS [15] view video summarization as a sequence-to-

sequence (seq2seq) problem, in which the input sequence is
a video and the output sequence is its summarization. They
propose to apply an attention mechanism that assigns dif-
ferent importance weights to different input frames for more
accurate summarization. Although RNN-based and seq2seq
architectures are good at modeling long sequences, they of-
ten suffer from the problem of inconsistency between the
lengths of the training and the test data [31], which makes
the trained model hard to generalize to test data.

Another issue of applying supervised learning to video
summarization is that it is hard to collect original-versus-
summarized pairs. However, we can easily collect many
summarization-like videos such as movie trailers or sports
game highlights from Youtube and Twitch, and we may
use them as guiding examples of summarization fragments
even though we do not have the original videos.

Contributions: We present an adversarial training frame-
work for semi-supervised video summarization. The frame-
work employs an attention-based pointer network (Ptr-Net)
[31] as the generator to predict the cutting (starting and end-
ing) points for each summarization fragment. The discrim-
inator in our framework is a 3D CNN classifier to judge
whether a video fragment is a good summarization or not.
An overview of our method is illustrated in Fig. 1. We train
this framework as a generative adversarial network (GAN)
[10], and show that our method achieves the state-of-the-
art performance on many challenging benchmark datasets
[2, 11, 28]. The main advantages and contributions of our
method are twofold:

1. We build a Ptr-Net as the generator and show that it
can effectively handle videos of widely varying lengths
and thus resolve the issue of inconsistent lengths of
training and test data. To our best knowledge, this
is the first work that uses the Ptr-Net to address the
length-inconsistency issue in video summarization.

2. Our method does not need more pairs of original and
summarized videos for improved performance—the
discriminator can strengthen the generator using un-
paired summarization fragments available on the Web.



Figure 1. An overview of our method. We present a GAN-based approach to video summarization. The generator, which is implemented
as a Ptr-Net, summarizes an input video into a summarization with video fragments. The Ptr-Net generator can handle the issue of
inconsistency between the lengths of training and test data. The discriminator judges whether a summarization fragment is from the
real summarization data or is produced by the generator. With the discriminator we may use other summarization-like videos as guiding
examples even if their original videos are not available.

2. Related Work

From the learning perspective, we may roughly di-
vide video-summarization methods into unsupervised ap-
proaches [1, 2, 5, 6, 7, 18, 20, 22] and supervised (or semi-
supervised) approaches [8, 9, 15, 27, 37, 39, 41]. We give
a quick overview below with respect to this dichotomy.
Notice that our method belongs to the supervised/semi-
supervised category.

A way to achieve unsupervised video summarization
is to use domain-specific knowledge as the criterion for
keyframe selection, for example, sports highlights with key-
word “home run” [7]. The shortcoming of using domain-
specific knowledge is that we need to handcraft different
key features for each domain. Another way for unsuper-
vised video summarization does not need domain-specific
knowledge but relies on visual relevance. Criteria of vi-
sual relevance include content frequency [2, 18], coverage
[5, 22], and user attention [6, 20].

Mahasseni et al. [21] propose a GAN-based method that
contains a variational autoencoder (VAE) as summarizer to
generate summarization and an RNN-based classifier as dis-
criminator to distinguish original (unsummarized) or sum-
marized videos. Their method achieves the state-of-the-art
performance under the category of unsupervised video sum-
marization. Note that, our discriminator is posed with a dif-
ferent task: it aims to judge whether a summarized video is
from the summarization dataset or is generated by the sum-
marizer.

Supervised video summarization approaches use the
training pairs that consist of original videos and correspond-
ing human-generated summarizations to learn how to sum-

marize videos. For instance, Gong et al. [9] formulate the
video summarization task as a supervised subset selection
problem, proposing a sequential Determinantal Point Pro-
cess (seqDPP) to learn how a subset is selected. Potapov
et al. [27] train a support vector machine to assign each
fragment a score and compose summarization from those
of high scores.

A video can be considered as a sequence of image frames
and thus is reasonable to be modeled by RNNs. Zhang et al.
[40] use bidirectional LSTM to model dependency of image
sequences and decide if a frame should be included as part
of the summarization. Fu et al. [8] also present a similar
method for the video-highlight task on League of Legend
(LoL) highlight dataset. A critical issue of all the above
methods is that they view the whole input frames as equally
important and ignore the underlying temporal structures.

To solve this problem, AVS [15] and re-SEQ2SEQ [41]
formulate video summarization as a seq2seq problem in
which the input sequence is an original video and the output
sequence is a summarization. Further, they incorporate an
attention mechanism into the seq2seq architecture, assign-
ing difference importance weights to different frames and
achieving a better performance. Frames are selected into the
summarization set according to their importance weights,
and therefore, during training, the method of AVS needs
each frame’s score as the ground-truth importance weight.
However, in practice, it is very difficult to collect video data
along with the per-frame scores for such a formulation of
training.

Since original videos and summarized sequences are
usually very long, the unrolling in seq2seq decoder would
thus be also very long, which makes the network hard to



Figure 2. An overview of Ptr-Net. The output of each decoding
time is the softmax distribution over all inputs, and the pointed
inputs (e.g., ‘A’ and ‘C’) will also be used for the next decoding.

train and degrades the performance for long summariza-
tion. Another drawback of previous seq2seq decoders is
the inconsistent lengths of training and test videos, which
results in worse performance during testing. Our method
avoids the issue of varying lengths by building a Ptr-Net
[31] as the seq2seq generative model. Instead of extracting
fragments of consecutive frames from the input video, we
only predict the cutting points, i.e., a tuple of starting and
ending points for each summarization fragment, so that the
output unrolling could be efficiently encoded. Moreover,
we combine the merits of supervised and unsupervised ap-
proaches by designing a discriminator that can train with
either original-summarized pairs or merely unpaired sum-
marization fragments to improve the summarizer.

3. Review of Ptr-Net

Ptr-Net [31] is one kind of seq2seq architecture whose
decoder selects a member from the input sequence as
the output, as show in Fig. 2. A typical seq2seq model
[29] consists of two RNNs: an encoder and a decoder.
The goal of the seq2seq model is to estimate the con-
ditional probability of output sequence given the input:
P (y1, ..., yT ′ |x1, ..., xT ), where (x1, ..., xT ) is the input se-
quence, (y1, ..., yT ′) is the output sequence and the length
T ′ of the output may be different from the length T of the
input. The encoder, which is an RNN and usually uses
LSTM cells for better memorization, first encodes the input
sequence (x1, ..., xT ) into a fixed-dimension representation
hT given by the last hidden state of the RNN. Then, the
decoder computes the probability of (y1, ..., yT ′) with the
initial hidden state set to hT :

P (y1, ...., yT ′ |x1, ..., xT ) =
T ′∏
i=1

P (yi|hT , y1, ..., yi−1) . (1)

Each P (yi|hT , y1, ..., yi−1) distribution function is imple-
mented as a softmax over all outputs. The attention model
[3, 35] augments the the encoder and decoder using atten-
tion mechanism over the entire sequence of encoder. Let
the encoder hidden states be (h1, ..., hT ) and the decoder
hidden states be (d1, ..., dT ′), and we compute the attention
vector at each output time i:

mi
j = vT tanh(W1hj +W2di) , aij = softmax(mi

j) , (2)

where mi
j is the attention weight for input j at output time

i, and aij , derived from mi
j after softmax normalization, is

the attention mask over input j. Further, v, W1, and W2 are
learnable parameters for the attention mechanism.

Ptr-Net is a special attention-based seq2seq model where
the output dictionary size depends on the number of ele-
ments in the input sequence. Similar to seq2seq with atten-
tion mechanism, Ptr-Net explicitly uses the attention mech-
anism to obtain the the output distribution, ai, represented
as a vector over all inputs j:

P (yi|hT , y1, ..., yi−1) = ai . (3)

Then, we can use greedy sampling or other sampling meth-
ods to choose the position in input as our final output pre-
diction based on ai.

Ptr-Net specifically targets on problems whose outputs
are discrete and correspond to positions in the input, and
therefore is very suitable for video summarization. More-
over, since Ptr-Net’s output softmax is not restricted to a
fixed size, it is able to work well with input sequences of
varying lengths [31].

4. Main Idea
The proposed method for video summarization is a GAN

model [10] that contains a Ptr-Net [31] as the generator and
a 3D CNN binary classifier as the discriminator, as shown in
Fig. 1. The generator summarizes the input video into sev-
eral fragments, and the discriminator distinguishes whether
a fragment is from ground-truth summarization or is gener-
ated by the summarizer. The goal is to make the generated
summarization fragments as authentic to the discriminator
as possible.

4.1. Ptr-Net Generator

We formulate video summarization as a seq2seq prob-
lem. The input sequence is an original video and the output
sequence comprises the summarization fragments. Inspired
by the question answering task in [32], we create a Ptr-Net
generator that uses bi-directional LSTM [24] as the encoder
and an attention-based cutting point predictor as the de-
coder. The decoder does not produce consecutive frames as
the output but only tuples of the starting and ending points
of fragments.

This way, we only need to maintain very compact infor-
mation about the fragments. The Ptr-Net generator would
not suffer from the difficulty of producing longer output se-
quences and would be easier to train. Our Ptr-Net generator
is illustrated in Fig. 3.

We first use a pre-trained CNN model to extract a fea-
ture vector fj for each input frame j. The encoder takes
input sequence {fj} and encodes feature vector fj into hid-
den states hj and h′j , using bi-LSTM RNN. The decoder



Figure 3. The Ptr-Net summarization generator: We use bi-LSTM as the seq2seq encoder. The point decoder performs as a frame selector
(video cutter), and it only outputs the tuple of starting and ending points for each fragment, making the output sequence more compact and
easier to train.

computes an attention mask mi
j based on all input hidden

states {hj}, {h′j} and the decoding hidden state di at each
decoding time i. Finally, the decoder produces a position
distribution ai (represented as a vector) for decoding time
i over the input sequence {fj} according to the attention
mask after softmax normalization.

fj = CNN(frame j), (hj , h
′
j) = RNN(fj),

mi
j = vT tanh(W1(hj , h

′
j) +W2di),

P (oi|h, h′, o1, ..., oi−1) = ai, ai = [softmax(mi
j)],

where P (oi|h, h′, o1, ..., oi−1) is the predicted position dis-
tribution for each decoding time i, and W1, W2, and v are
learnable parameters for attention based point decoder. We
use the vector ai to denote the aggregated activations of the
softmax normalization mi

j . We can view ai as an output
distribution over the position j in the input sequence.

Since we have the original video and its corresponding
ground-truth summarization pair, we can train our genera-
tor via supervised learning. The output of the generator is
represented as tuples. The decoder predicts in turn the start-
ing point of fragment 1, the ending point of fragment 1, the
starting point of fragment 2, the ending point of fragment
2, ..., and so on, with a finishing token denoted as ‘#’ at
the end. Similar to the typical seq2seq, we use a maximum
output length L and apply paddings for all output sequence.
Take, for example, a ground-truth summarization that con-
tains tuples for fragments (1, 6) and (9, 11) and the maxi-
mum output length L = 8, the output sequence should be
represented as follows:

output: 1 6 9 11 # # # # . (4)

In our implementation, we add a blank image at the end
of all frames in input video sequence, and if the decoder
points to it, it will generate the finished token ‘#’. Since
the length of generated summarization could be very long
with respect to long input video sequence, we only output
tuples of the starting and ending points for selected frag-
ments instead of all frame indexes. This mechanism can

prevent L from being too large and helps to avoid too many
redundant finishing tokens padded to the tail of the output
sequence.

The decoder produces a softmax distribution over input
positions, and we can calculate loss via a categorical loss
function with ground-truth positions represented as one-hot
vectors. During training, we use teacher forcing [34] to
train our point decoder. That is, no matter what we pre-
dict before, we always take the ground-truth position frame
from the input for each decoding time. In training infancy,
the generator predicts not so well, and if we do not apply
teacher forcing, the previous prediction error would accu-
mulate along the prediction, resulting in unstable training
behavior on the whole sequence. Further, [34] proves that
teacher forcing can help a sequence-generation model to
converge faster. Another benefit of teacher forcing is that
since the decoding input is restricted by the ground truth,
we do not need to deal with the out-of-order problem such
as the fragment (9, 11) coming out first and then the frag-
ment (1, 6). Please note that we only apply teacher forcing
at the training time; during inference, we simply do stan-
dard RNN unrolling.

In brief, our generator aims at minimizing the average of
output categorical loss (J1) for each time step:

J1 =
1

L

L∑
i=1

[CategoricalLoss(P (oi), gi)] , (5)

where L is the length of output sequence, P (oi) and gi are
the predicted position distribution and the one-hot vector of
ground-truth position at time i, respectively. In our experi-
ments we use cross entropy as the categorical loss function.

4.2. Discriminator

A typical GAN model contains a discriminator to dis-
tinguish the ground-truth samples from the generated ones.
The discriminator is trained with the generator under an ad-
versarial learning mechanism. In our method, as shown in
Fig. 4, the discriminator is a 3D CNN binary classifier [14]



Figure 4. The summarization fragment discriminator. We use 3D CNN as a binary classifier to decide whether a fragment is from the
ground-truth dataset or is generated by our summarizer.

that judges whether a summarization fragment is from the
ground-truth dataset or is generated by our summarizer.

Instead of using RNNs again, we use a CNN architecture
to construct the discriminators. CNNs are good at extract-
ing dominant receptive fields, and we thus consider that it
should be sufficient for a CNN to tell the authenticity simply
based on several frames of a fragment. We randomly pick a
fixed number of frames chronologically in a fragment, and
concatenate the frames into a 3D cuboid as the discriminator
input. Then, the cuboid goes through the 3D CNN and the
output is a prediction on the cuboid being from the ground-
truth summarization (True) or from the generator (False).
The discriminator targets on maximizing the prediction cor-
rectness (J2):

J2 = Ex∼gt[log(D(x))] + Ex̂∼summarizer[log(1−D(x̂))] , (6)

where x is a ground-truth summarization fragment and x̂ is
a summarizer-generated fragment.

4.2.1 Training the Ptr-Generator via Policy Gradient

Since the outputs of the ptr-generator are discrete proba-
bility distribution and are not differentiable, we cannot up-
date our generator from the discriminator via simple back-
propagation. Here, like SeqGAN [38], we adopt policy gra-
dient to estimate the approximate gradient. That is, we con-
sider the output from the discriminator as the reward and
use REINFORCE algorithm [33] to train our generator so
that it can maximize the reward from our discriminator.

The objective function (J3) we want to maximize is the
expected reward as follows:

J3 = EP (o1:L)[R], (7)

where P means the probability, oi means the output position
at decoding time i, P (o1:L) represents ΠiP (oi|o1:i−1) and
we setR as the true label output from the discriminator. We
then estimate the gradient by runningM samplings with the

REINFORCE algorithm:

∇J3 =

L∑
i=1

EP (o1:L)[∇ logP (oi|o1:i−1)R]

≈ 1

M

M∑
m=1

L∑
i=1

[∇ logP (omi |om1:i−1)R
m],

(8)

where the superscript m denotes that it belongs to the m-th
sampling.

Since the approximation of ∇J3 is unbiased, it may have
very high variance [33]. One common way to reduce this
variance is to subtract a baseline value b from the reward
function R, transforming the approximated gradient into

∇J3 ≈
1

M

M∑
m=1

L∑
i=1

[∇ logP (omi |om1:i−1)R
m − bm]. (9)

Here we apply the same baseline strategy as Lewis et al.
[19], treating the bias value b as the average reward from
then until now.

Although the discriminator can judge whether a frag-
ment is suitable or not, doing summarization using only the
discriminator is usually not good enough. Take a singing
performance video for example. Each frame contains the
singer can be expected as good material for summarization.
Nevertheless, we would not pick all of them since we might
try to avoid too many repeated or similar views in the sum-
marization. Moreover, whether a fragment belongs to the
summarization or not is not only based on its own content
but also related to the entire original video, and hence we
cannot predict accurately if we only judge the fragments
one by one.

In general, the Ptr-Net generator learns how to select
fragments from original videos, and the discriminator pro-
vides a common judgment about how a good fragment
should be. Both of them are indispensable and in Section 5,
we show that the performance can be improved after train-
ing with the discriminator.

4.2.2 Learning from Unpaired Video Summarizations

We can easily collect lots of summarization videos from
YouTube and Twitch. Although the original videos are not



available to form training pairs, we may use only the sum-
marization videos to train the discriminator as well as the
generator under our GAN framework. For those unpaired
summarization videos, since we do not know the exact split
position for each fragment, we apply naive frame clustering
like [25] to split whole video summarization into several
fragments. We can use these unpaired summarization frag-
ments as the ground-truth samples to train our discriminator
by maximizing J4:

J4 = Ex′∼unpaired[log(D(x′))] . (10)

4.3. Optimization

Finally we can optimize our ptr-generator and discrimi-
nator by minimizing the following objectives:

Generator: J1 − J3,
Discriminator: − J2 − αJ4,

(11)

where J1 is the supervised categorical loss for the ptr-
generator, J3 is the expected reward from the discrimina-
tor via policy gradient, J2 and J4 represent the optimized
targets for ground-truth and unpaired summarization frag-
ments, respectively, and α is a weighting factor between
ground-truth and unpaired for the discriminator. Please note
that J3, J2, and J4 are to be maximized, so we add negative
signs in the objectives for minimization.

4.4. Inference

During inference, we only perform the generation part,
which includes visual feature extraction and ptr-generation,
to process the input video. Furthermore, when performing
inference, we do not adopt teacher forcing as we have done
during training, and therefore the output of predicted sum-
marization fragments may be overlapped or out of ordering.
Here we apply an intuitive post-processing step in which
we choose the union of predicted fragments and sort them
to meet the time order. For example, if the predicted outputs
are (12, 16), (3, 7), and (6, 10). We will merge (3, 7) and
(6, 10) into (3, 10) and then sort them to obtain (3, 10) and
(12, 16) as the final summarization fragments.

5. Experimental Results
This section begins with a description of experiment set-

ting. Then, we show the benchmark results with detailed
analysis. Finally, except for the quantitative results, we also
demonstrate our qualitative results.

5.1. Experiment Setting

5.1.1 Datasets

We evaluate our method on four datasets: SumMe [11],
TVSum [28], YouTube [2], and LoL [8]. SumMe [11]
consists of 25 recording event videos such as festival and

Table 1. Datasets for evaluation.

Dataset # Videos Duration Summarization Type
SumMe [11] 25 2-7 Keyframe selection
TVSum [28] 25 1-5 Keyframe selection
YouTube [2] 50 1-10 Keyframe selection

LoL [8] 218 30-50 Fragment selection

sports, and TVSum [28] includes 50 YouTube videos. Both
SumMe and TVSum provide frame-level importance score
for each video. To compare with previous state-of-the-art
methods, we follow [40] to convert frame-level score to
keyframe summaries for evaluation. YouTube [2] contains
50 videos from Open Video Project (OVP), including ani-
mation, news, and sports. Since YouTube only provides se-
lected keyframes as ground truths, we set them as our eval-
uation target directly. LoL [8] provides 218 videos about
match highlight of League of Legends from NALCS. In-
stead of providing only keyframes, LoL provides the com-
plete summarization videos. Table 1 shows the properties
of these datasets.

5.1.2 Implementation Details

For fair comparison with the previous methods, we use the
output of pool5 layer of a pre-trained GoogleLeNet [30] (di-
mension=1024) as visual feature for SumMe, TVSum, and
YoutTube. For LoL, we choose ResNet-34 [12] (dimen-
sion=512), the same as [8], to be our visual feature extrac-
tor.

Since we have two summarization types, keyframe se-
lection and fragment selection, for different datasets, we
implement different settings for each type. For keyframe
selection on SumMe, TVSum, and Youtube, our point de-
coder of generator predicts the keyframe position directly
and we see the whole keyframe set as summarization frag-
ment to feed into the dicsriminator. For fragment selection
on LoL, we maintain our setting as described in Section 4.
We use 256 hidden units for both the encoder and decoder
LSTM cells.

We implement a cross-entropy loss as the categorical
loss function for optimizing the generator. For the discrim-
inator, we construct five 3D convolutional layers and three
fully connected layers as a 3D CNN classifier, and set the
weighting factor α in Eq. (11) to be 0.6. For the policy
gradient to train the ptr-generator, we run 16 samples each
time, where is the M in Eq. (8). We train our proposed
model with batch-size 16 on a GTX1080 Ti GPU and adapt
Adam [17] optimizer whose learning rates for generator and
discriminator are 0.005 and 0.002, respectively. Our model
is implemented in PyTorch [26] and the code will be re-
leased after the review process.



Table 2. Performance (F-score) comparison with state-of-the-art
methods on various datasets.

Method SumMe TVSum YouTube LoL
vsLSTM [40] 37.6 54.2 - -

dppLSTM [40] 38.6 54.7 - -
Li et al. [37] 43.1 52.7 - -

Zhang et al. [39] 40.9 - 61.0 -
SUM-GAN [21] 41.7 56.3 62.5 -

A-AVS [15] 43.9 59.4 65.8 -
M-AVS [15] 44.4 61.0 66.2 -
Fu et al. [8] - - - 72.2

OursG 45.5 60.8 68.2 75.1
Ours 46.2 63.6 69.7 77.8

5.1.3 Evaluation Metrics

We consider F-score, which is widely used in video sum-
marization tasks, for evaluation [8, 15, 21, 37, 39, 40], that
is,

P =
Sgt ∩ Spd

|Spd|
, R =

Sgt ∩ Spd

|Sgt|
, F =

2PR

P +R
, (12)

where Sgt and Spd are ground-truth summarization and
generated summarization, respectively. The final F-score
is computed as F .

5.1.4 Baselines

We compare our method with several state-of-the-art video
summarization methods, including both unsupervised and
supervised approaches, and their results are all from the
original papers. We choose supervised version of SUM-
GAN [21] which is a GAN-based summarization method,
vsLSTM [40] which uses RNN to model a video as a
long image sequence, and AVS [15] which applies attention
mechanism to frame importance weighting. We also include
additional supervised methods such as [37], which learns
the keyframe property weights, and [39], which transfers
the summary structure from training videos to test videos.
For fragment-selection video summarization task on LoL
dataset, we compare our method with [8], which also uses
RNN to model video frame sequences.

5.2. Quantitative Results

Table 2 shows the comparison results. Our method
achieves the best performance. We train two variants of our
method, one only with the Ptr-Net generator (OursG) and
the other with the complete generator-discriminator model
(Ours). We can see that just using the attention-aware Ptr-
Net as summarizer (OursG) already almost improves the
summarization results on all datasets, because Ptr-Net can
give a more concise output in the form of the cutting point in
the input sequence. The complete model with the discrimi-
nator (Ours) can further improve the performance, showing

Table 3. Performance (F-score) comparison under unbalanced
training-test length.

Dataset TVSum LoL
Train/Test < 3.5 / > 3.5 < 45 / > 45

vsLSTM [40] 51.6 (-2.6) -
dppLSTM [40] 51.7 (-3.0) -

Fu et al. [8] - 70.7 (-1.5)
OursG 60.2 (-0.6) 75.0 (-0.1)
Ours 62.9 (-0.7) 77.3 (-0.5)

that our discriminator gives proper feedback to the genera-
tor and helps it to predict better.

For frame selection, our discriminator gets a 2.8% im-
provement on TVSum, better than on SumMe and YouTube.
A possile reason is that since TVSum is collected from 10
different categories, it is not easy to learn the attention mask
on so diverse inputs given only 25 videos. However, with
the discriminator, the 3D CNN classifier can still classify
the keyframe set very well, sending the additional feedback
to train the generator better.

For fragment selection, we can also see a significant im-
provement over the previous method [8]. The main problem
of [8] is that they select a frame by modeling only the pre-
vious frames, but a summarization usually also relates to
the future consequence. For example, in LoL, a highlight
usually happens during fighting. However, the method of
[8] can only cut the fragment starting on fighting, but the
ground-truth summarization usually includes several previ-
ous frames before the fighting really starts. Another exam-
ple is common in sports videos like basketball. Someone
making a jump shot can be a highlight, but the highlight
should also include the player dribbling before jumping.
Our Ptr-Net seq2seq generator sees the whole sequence and
then predicts the starting and ending positions, and so we
do not encounter that problem.

5.3. Detailed Analysis

5.3.1 Unbalanced Train-test Lengths

Typical RNNs suffer from a problem called unbalanced
train-test length [31], especially when the length of input
during testing is much longer. We do an experiment of un-
balanced train-test length on TVSum and LoL datasets. For
TVSum, we select videos shorter than 3.5 minutes as the
training set, and test on the videos longer than 3.5 minutes.
For LoL, we choose 45 minutes as the separation threshold.

The results are shown in Table 3. Both [40] and [8]
have a performance drop under unbalanced train-test length.
Since our Ptr-Net generator has a flexible attention point
mechanism, it is not restricted to the input length. Our
method achieves similar performance even with unbalanced
train-test length.



Figure 5. Examples of video summarization of YouTube dataset, along with the ground-truth summarization.

Table 4. Performance (F-score) improvement when trained with
unpaired summarizations.

Dataset Ours
SumMe + YouTubeS 47.3 (+1.1)
TVSum + YoutubeS 65.1 (+1.5)

LoL (NALCS) + LoLS (LMS) 79.4 (+1.6)

Table 5. Timing results of our proposed method under different
datasets and batch-size.

Dataset Batch-size Duration (min) Time (sec)
Youtube 1 3.95 11.69
Youtube 16 3.56 145.83

LoL 1 48.52 172.57
LoL 16 42.74 2218.15

5.3.2 Training with Unpaired Summarizations

Our model can also be trained with unpaired summariza-
tions that do not have the original videos. We add only
the summarization part of YouTube dataset, marked as
YouTubeS , into SumMe and TVSum. Likewise, we add
the summarization-only LMS part of LoL, marked as LoLS

(LMS), into LoL dataset. As shown in Table 4, all of them
gain improvement under the above settings. Please note that
the summarization part is only for additional training, we
still test on the same testing set as prior experiment.

5.3.3 Time Complexity

Table 5 shows the average length of video input and the
overall processing time over a batch. Please note that the
timing includes both the process of visual feature extrac-
tion and the process of video summarization through our
ptr-generator. During inference, we do not need to run the
discriminator.

We can see that, for Youtube dataset, summarizing a
video with 3.95 minutes long takes only 11.69 seconds via
our proposed model. If we concatenate the 16 videos and
perform summarization for them simultaneously, the over-
all time is much less than doing them one by one because
of the parallel acceleration of GPU. A similar result can be
found for LoL dataset. The result shows that our method
can summarize the video accurately and efficiently.

5.4. Qualitative Results

To better visualize the characteristics of our method,
we present some predictions done by our method on the
YouTube dataset in Fig. 5. It can be seen that although
our method may not select exactly the same frame as the
ground truth, our generated summarization has very good
visual similarity with the ground truth and also looks rea-
sonable.

6. Conclusion

We have presented a GAN-based training framework
aiming to combine unsupervised and supervised video sum-
marization settings. Our method contains an attention-
based Ptr-Net as the generator to produce the summariza-
tion of an input video by predicting the cutting points of
fragments. We construct a 3D CNN classifier as the dis-
criminator to judge if the summarizer-generated summa-
rizations are as authentic and of quality as human-created
summarizations. The proposed method outperforms pre-
vious methods on SumMe, TVSum, YouTube, and LoL
datasets by 1.5% to 5.6%. We show that our Ptr-Net
generator does not suffer from the problem of unbalanced
training-test length, and our discriminator can make good
use of those unpaired summarizations without original
videos to improve the generator.
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