
Diversity-Driven Exploration Strategy for Deep
Reinforcement Learning

Zhang-Wei Hong, Tzu-Yun Shann, Shih-Yang Su, Yi-Hsiang Chang, Tsu-Jui Fu,
and Chun-Yi Lee

National Tsing Hua University
{williamd4112,arielshann,at7788546,shawn420,rayfu1996ozig,cylee}

@gapp.nthu.edu.tw

Abstract

Efficient exploration remains a challenging research problem in reinforcement
learning, especially when an environment contains large state spaces, deceptive
or sparse rewards. To tackle this problem, we present a diversity-driven approach
for exploration, which can be easily combined with both off- and on-policy rein-
forcement learning algorithms. We show that by simply adding a distance measure
regularization to the loss function, the proposed methodology significantly en-
hances an agent’s exploratory behavior, and thus prevents the policy from being
trapped in local optima. We further propose an adaptive scaling strategy to enhance
the performance. We demonstrate the effectiveness of our method in huge 2D
gridworlds and a variety of benchmark environments, including Atari 2600 and
MuJoCo. Experimental results validate that our method outperforms baseline
approaches in most tasks in terms of mean scores and exploration efficiency.

1 Introduction
In recent years, deep reinforcement learning (DRL) has attracted attention in a variety of application
domains, such as game playing [1, 2] and robot navigation [3]. However, exploration remains a major
challenge for environments with large state spaces, deceptive local optima, or sparse reward signals.
In an environment with deceptive rewards, an agent can be trapped in local optima, and never discover
alternate strategies to find larger payoffs. For example, in HalfCheetah of MuJoCo [4], the agent
quickly learns to flip on its back and then “wiggles” its way forward, which is a sub-optimal policy [5].
In addition, environments with only sparse rewards provide few training signals, making it hard for
agents to discover feasible policies. A common approach for exploration is to adopt simple heuristic
methods, such as ε-greedy [1, 6] or entropy regularization [7]. However, such strategies are unlikely
to yield satisfactory results in tasks with deceptive or sparse rewards [8, 9]. A more sophisticated line
of methods provides agents with bonus rewards whenever they visit a novel state. For example, [10]
uses information gain as a measurement of state novelty. In [11], a counting table is used to estimate
the novelty of a visited state. Neural density model [12] has also been utilized to measure bonus
rewards for agents. In [13, 14], the novelty of a state is estimated from the prediction errors of their
system dynamics models. These methods, however, often require statistical or predictive models to
evaluate the novelty of a state, and therefore increase the complexity of the training procedure.

In order to deal with the issue of complexity, a few researchers attempts to embrace the idea of random
perturbation from evolutionary algorithms [5, 8]. By adding random noise to the parameter space,
their methods allow RL agents to perform exploration more consistently without introducing extra
computational costs. Despite their simplicity, these methods are less efficient in large state spaces, as
random noise changes the behavioral patterns of agents in an unpredictable fashion [5, 8]. In [15],
the authors propose to address the problem by training multiple value functions with bootstrap sub-
samples. However, it requires extra model parameters, causing additional computational overheads.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



In this paper, we present a diversity-driven exploration strategy, a methodology that encourages a
DRL agent to attempt policies different from its prior policies. We propose to use a distance measure
to modify the loss function to tackle the problems of large state spaces, deceptiveness and sparsity
in reward signals. The distance measure evaluates the novelty between the current policy and a
set of prior policies. Our method draws inspiration from novelty search [16–18], which promotes
population-based exploration by encouraging novel behaviors. Our method differs from it in several
aspects. First, we cast the concept of novelty search from evolution strategies into DRL frameworks.
Second, we train a single agent instead of a population. Third, novelty search ignores rewards
altogether, while ours optimizes the policy using both the reward signals and the distance measure. A
work parallel to ours similarly employs novelty search for exploration [19]. However, their method
still lies in the realm of genetic algorithms. We demonstrate that our methodology is complementary
and easily applicable to most off- and on-policy DRL algorithms. We further propose an adaptive
scaling strategy, which dynamically scales the effect of the distance measure for enhancing the overall
performance. The adaptive scaling strategy consists of two methods: a distance-based method and
a performance-based method. The former method adjusts the scaling factor based on the distance
measure, while the latter method scales it according to the performances of the prior policies.

To validate the effectiveness of the proposed diversity-driven exploration strategy, we first demon-
strate that our method does lead to better exploratory behaviors in 2D gridworlds with deceptive or
sparse rewards. We compare our method against a number of contemporary exploration approaches
(i.e., the baselines). Our experimental results show that while most baseline agents employing the
contemporary exploration approaches are easily trapped by deceptive rewards or fail in the sparse
reward settings, the agents employing our exploration strategy are able to overcome aforementioned
challenges, and learn effective policies even when the reward signals are sparse or when the environ-
ments contain deceptive rewards. We have further evaluated our method in a variety of benchmark
environments, including Atari 2600 [20] and MuJoCo [4]. We performed various experiments to
demonstrate the benefits of diversity-driven exploration strategy. We show that the proposed method-
ology is superior to, or comparable with the baselines in terms of mean scores and learning time.
Moreover, we provide a comprehensive ablative analysis of the proposed adaptive scaling strategy,
and investigate the impact of different scaling methods on the learning curves of the DRL agents.

The main contributions of this paper are summarized as follows:

• A simple, effective, and efficient exploration strategy applicable to most off- and on-policy
DRL algorithms.

• A promising way to deal with large state spaces, deceptive rewards, and sparse reward
settings.

• A loss function designed for encouraging exploration by the use of a distance measure
between the current policy and a limited set of the most recent policies.

• An adaptive scaling strategy consisting of two scaling methods for the distance measure. It
enhances the overall performance.

• A comprehensive comparison between the proposed methodology and a number of contem-
porary approaches, evaluated on three different environments.

The remainder of this paper is organized as the following. Section 2 provides background mate-
rial. Section 3 walks through the proposed exploration strategy in detail. Section 4 presents the
experimental setup and results. Section 5 discusses the related work. Section 6 concludes this paper.

2 Background
In this section, we review the concept of RL, and the off- and on-policy methods used in this paper.

2.1 Reinforcement Learning

RL is a method to train an agent to interact with an environment E . An RL agent observes a state s
from the state space S of E , takes an action a from the action space A according to its policy π(ajs),
and receives a reward r(s, a). E then transits to a new state s0. The agent’s objective is to maximize
its discounted accumulated rewards Gt =

PT
�=t γ

��tr(s� , a� ), where t is the current timestep,
γ 2 (0, 1] the discount factor, and T the horizon. The action-value function (i.e., Q-function) of a
given policy π is defined as the expected return starting from a state-action pair (s, a), expressed as
Q(s, a) = E

�
Gtjst = s, at = a, π].

2



2.2 Off-Policy Methods

Off-policy methods decouple the behavior and target policies, enabling an agent to learn using
samples collected by arbitrary policies or from an experience replay [1]. We briefly review two
representative off-policy methods, namely Deep Q-Network (DQN) [1] and Deep Deterministic
Policy Gradient (DDPG) [21].

DQN. DQN is a deep neural network (DNN) parameterized by θ for approximating the optimal
Q-function. For exploration, it follows an ε-greedy strategy described in [1]. The network is trained
with samples drawn from an experience replay Z, and is updated according to the loss function
LDQN expressed as:

LDQN = Es;a;r;s0�U(Z)

�
(y �Q(s, a, θ))2

�
, (1)

where y = r(s, a) + γmaxa0 Q(s0, a0, θ�), U(Z) is a uniform distribution over Z, and θ� the
parameters of the target network. θ� is updated by θ at predefined intervals.

DDPG. DDPG is an actor-critic approach based on the deterministic policy gradient (DPG) algo-
rithm [22] that learns policies over continuous action spaces. The critic estimates the Q-function
similarly as that of DQN, with a minor modification to y, expressed as y = r(s, a) + γQ(s0, π(s0)).
The actor is trained to maximize the critic’s estimated Q-values, with a loss function Lactor given by:

Lactor = �Es
�
Q(s, π(s))

�
, (2)

where s is sampled from Z. DDPG uses a stochastic policy π̂(s) = π(s) +N for exploration, where
N is a noise process. N can be either normally distributed or generated by the Ornstein-Uhlenbeck
(OU) process [21].

2.3 On-Policy Methods

On-policy methods update their value functions based on the samples generated by the current policy.
We review a state-of-the-art on-policy method called Advantage Actor-Critic (A2C) [7, 23], which is
evaluated and compared to the proposed methodology in Section 4. A2C is a synchronous variant
of Asynchronous Advantage Actor-Critic (A3C) [7], which trains agents in parallel, on multiple
instances of the environment. A2C offers better utilization of GPUs than A3C. Similarly, the critic
estimates the value function V (s). The actor optimizes π(ajs, θ) with respect to θ along the direction:

r� log π(ajs, θ)(Gt � V (s)) + βr�H(π(ajs, θ)), (3)

where β is a hyperparameter for controlling the strength of the entropy H(π(ajs, θ)). A2C uti-
lizes H(π(ajs, θ)) to encourage exploratory behaviors, as well as prevent agents from converging
prematurely to sub-optimal policies.

3 Diversity-Driven Exploration Strategy
The main objective of the proposed diversity-driven exploration strategy is to encourage a DRL agent
to explore different behaviors during the training phase. Diversity-driven exploration is an effective
way to motivate an agent to examine a richer set of states, as well as provide it with an approach to
escape from sub-optimal policies. It can be achieved by modifying the loss function LD as follows:

LD = L� E�02�0 [αD(π, π0)], (4)

where L indicates the loss function of any arbitrary DRL algorithms, π is the current policy, π0 is a
policy sampled from a limited set of the most recent policies �0, D is a distance measure between π
and π0, and α is a scaling factor for D. The second term in eq. (4) encourages an agent to update
π with gradients towards directions such that π diverges from the samples in �0. Eq. (4) provides
several favorable properties. First, it drives an agent to proactively attempt new policies, increasing
the opportunities to visit novel states even in the absence of reward signals from E . This property
is especially useful in sparse reward settings, where the reward is zero for most of the states in
S. Second, the distance measure D motivates exploration by modifying an agent’s current policy
π, instead of altering its behavior randomly. Third, it allows an agent to perform either greedy or
stochastic policies while exploring effectively in the training phase. For greedy policies, since D
requires an agent to adjust π after each update, the greedy action for a state may change accordingly,
potentially directing the agent to explore unseen states. This property also ensures that the agent acts
consistently in the states it has been familiar with, as π and π0 yield the same outcomes for those

3



states. These three properties allow a DRL agent to explore an environment in a systematic and
consistent manner. The choice of D can be KL-divergence, L2-norm, or mean square error (MSE).
The interested reader is referred to our supplementary material for more details of how the distance
measure is selected. In the subsequent sections, we explain how diversity-driven exploration can be
combined with off-policy and on-policy methods, for both discrete and continuous control problems.

3.1 Implementation on Off-Policy Methods

Most off-policy DRL algorithms [1, 21] adopt the experience replay mechanism to stabilize the learn-
ing process. We show that diversity-driven exploration can be readily applied to existing algorithms
for both discrete (DQN) and continuous (DDPG) control tasks, with only a few modifications to the
experience replay buffer Z.

Div-DQN. We make the following changes to the DQN algorithm. First, we additionally store the
past Q-values (denoted as Q0(s, a)) in Z. Second, for the sake of defining a proper distance measure,
we use a probabilistic formulation as in [5] by applying the softmax function over the predicted
Q-values. We therefore define π(ajs) = exp(Q(s, a))/�a02A exp(Q(s, a0)). π0(ajs) is defined
similarly but uses Q0(s, a) instead. We adopt KL-divergence as the distance measure, denoted as
DKL. Eq. (4) is rewritten as:

LD = L� EQ̂(s;a)�U(Z)[αDKL(π(ajs)jjπ0(ajs))], (5)

where α can be either a predefined value, or determined by the adaptive methods in Section 3.3.

Div-DDPG. For diversity-driven DDPG, we use the actions stored in Z, and modify Eq. (4) as:

LD = L� Es;a0�U(Z)[αD(π(s), a0)], (6)

where a0 is a prior action sampled from Z. The distance measure D here is simply an MSE function
between π(s) and a0. The value of α is determined in a similar fashion as that of DQN. Please
note that we do not use the stochastic exploration policy mentioned in Section 2.2, since D alone is
sufficient enough for improving the exploratory behavior.

3.2 Implementation on On-Policy Methods

Apart from off-policy methods, we explain how our methodology can be applied to on-policy methods.

Div-A2C. As A2C has no experience replay, we maintain the n most recent policies for calculating
the distance measure D. In general cases, n = 5 is sufficient to yield satisfactory performance. The
loss function LD is thus expressed as:

LD = L� Es�� [E�0�
∏[α�0DKL(π(s), π0(s))]], (7)

where τ represents the batch of on-policy data,
Q

is the set of prior polices, and π0 is a prior policy.
KL-divergence is used as the distance measure. We describe in detail a performance-based method to
scale α�0 for each individual prior policy π0 in Section 3.3.

3.3 Adaptive Scaling Strategy

Although α can be linearly annealed over time, we find this solution less than ideal in some cases.
We demonstrate these cases in experimental results provided in Section 4. To update α in a way that
leads to better overall performance, we consider two adaptive scaling methods: the distance-based
and the performance-based methods. In our experiments, the off-policy algorithms use only the
distance-based method, while the on-policy algorithm uses both methods for scaling α.

Distance-based. Similar to [5], we relate α to the distance measure D. We adaptively increase or
decrease the value of α depending on whether D is below or above a certain threshold δ. The simple
approach we use to update α for each training iteration is defined as:

α :=

�
1.01α, if E

�
D(π, π0

�
] � δ

0.99α, otherwise
. (8)

Please note that different values of δ are applied to different methods in our experiments. The method
for determining the value of δ is described in the supplementary material.

4



Table 1: Evaluation results of the gridworld experiments.

Deceptive Reward
50 � 50 100� 100 200� 200

Vanilla-DQN 0.010 0.010 0.010
Noisy-DQN 0.009 0.004 0.010
Div-DQN 0.202 0.604 0.208

Sparse Reward
50 � 50 100� 100 200� 200

Vanilla-DQN 0.300 0.100 0.000
Noisy-DQN 0.400 0.200 0.000
Div-DQN 1.000 1.000 1.000

Performance-based.While the distance-based scaling method is straightforward and effective, it
alone does not lead to the same performance for on-policy algorithms. The rationale behind this is
that we only use the �ve most recent policies (n = 5 ) to computeL D , which often results in high
variance, and instability during the training phase. Off-policy algorithms do not suffer from this issue,
as they can utilize experience replay to provide a suf�ciently large set of past policies. Therefore, we
propose to further adjust the value of� for on-policy algorithms according to the performance of past
policies to stabilize the learning process. We de�ne� i in either one of the following two strategies:

� � 0 := � (2(
P(� 0) � Pmin

Pmax � Pmin
) � 1) (Proactive); � � 0 := 1 :0 �

P(� 0) � Pmin

Pmax � Pmin
(Reactive); (9)

whereP(� 0) denotes the average performance of� 0 over �ve episodes, andPmin andPmax represent
the minimum and maximum performance attained by the set of past policies� 0. Note that� � 0 falls
in the interval[� 1; 1] for the proactive strategy, and[0; 1] for the reactive one. The proactive strategy
incentivizes the current policy� to converge to the high-performing policies in� 0, while keeping
away from the poor ones. On the other hand, the reactive strategy only motivates� to stay away from
the underperforming policies. We provide a comprehensive ablative analysis for these strategies in
Section 4. Note that we apply both eq. (8) and eq. (9) to the on-policy methods in our experiments.

3.4 Clipping of Distance Measure

In some cases, the values ofD become extraordinarily high, causing instability in the training phase
and thus degrading the performance. To stabilize the learning process, we clipD to be between� c
andc, wherec is a prede�ned constant. Please refer to our supplementary material for more details.

4 Experiments

In this section, we present our experimental results and discuss their implications. We �rst provide
an overview of the experimental setup and the environments we used to evaluate our models in
Section 4.1. In Sections 4.2� 4.4, we report results in three different environments, respectively. We
further provide an ablative analysis for the proposed methodology in the supplementary material.

4.1 Experimental Setup

4.1.1 Environments

Gridworld. To provide an illustrative example of our method's effectiveness, we create a huge 2D
gridworld (Fig. 1) with two different settings: (1) sparse reward setting, and (2) deceptive reward
setting. In both settings, the agent starts from the top-left corner of the map, with an objective to reach
the bottom-right corner to obtain a reward of 1. At each timestep, the agent observes its absolute
coordinate, and chooses from four possible actions:move north, move south, move west, andmove
east. An episode terminates immediately after a reward is collected. In the deceptive reward setting
illustrated in Fig. 1 (a), the central area of the map is scattered with small rewards of 0.001 to distract
the agent from �nding the highest reward in the bottom-right corner. On the other hand, in the sparse
reward setting depicted in Fig. 1 (b), there is only a single reward located at the bottom-right corner.

Atari 2600. For discrete control tasks, we perform experiments in the Arcade Learning Environment
(ALE) [20]. We select eight games varying in their dif�culty of exploration according to [24]. In
each game, the agent receives84� 84� 4 stacked grayscale images as inputs, as described in [1].

MuJoCo. For continuous control tasks, we conduct experiments in environments built on the MuJoCo
physics engine [4]. We select a number of robotic control tasks to evaluate the performance of the
proposed methodology and the baseline methods. In each task, the agent takes as input a vector of
physical states, and generates a vector of action values to manipulate the robots in the environment.

5




