
Learning from Observation-Only Demonstration
for Task-Oriented Language Grounding via Self-Examination

Tsu-Jui Fu†, Yuta Tsuboi‡, Sosuke Kobayashi‡, Yuta Kikuchi‡

†UC Santa Barbara ‡Preferred Networks, Inc.

Abstract

Imitation learning is effective to learn control policy from
expert demonstrations. Instead of traditional image-guided
methods, instruction-oriented learning makes it more flexible
and useful in real-world applications. However, most exist-
ing imitation methods rely on the assumptions that the action
sequences are given in the demonstrations and that the agent
can interact with the demonstrations’ state to try-and-error,
which greatly reduces the practicality of the methods. In this
paper, we focus on imitation learning with fixed, observation-
only demonstrations where ground truth action sequences are
not explicitly given under the visual-language setting. We
propose a two-phase method which first imitates the given
demonstrations and then further improves the action policy
via self-examination, i.e., evaluating explorations over the
state space through auto-generated examples. We evaluate our
method on pick-and-place tasks and the result shows that the
self-examination actually benefits language grounding.

Introduction
Making autonomous agents to perceive the environment
and be able to do a series of related action (Russell and
Norvig 1995) is one of the most important targets of Ar-
tificial Intelligence (AI) system. In order to acquire such
complex skills, agents should be provided with some re-
ward indications which represent the desired goal of be-
havior. In general, there are two kinds of reward indica-
tion for an agent to learn from, reward function and ex-
pert demonstration. Reward function is widely studied in
numerous reinforcement learning research (Tsitsiklis 1994;
Sutton et al. 1999) which directly gives the reward feed-
back of the behavior under the environment. And, the agent
tries to maximize the feedback through trial and error, then
finally learns from the reward function defined by the ex-
pected skill. However, for complex environments, it is dif-
ficult to specify the reward function by human knowledge
or hand, especially for those tasks where the success is only
defined by the final observation.

Learning from expert demonstrations, also known as im-
itation learning (Schaal 1999; Argall et al. 2009), can avoid
the issue of learning from reward function by watching the
examples of successful behavior. Imitation learning learns

Figure 1: Examples of task-oriented language grounding.

the control policy by following how expert do in the demon-
strations which can be divided into behavioral cloning (BC)
(Bain and Sammut 1995; Pomerleau 1989) and inverse re-
inforcement learning (IRL). With sequences of observa-
tion, BC tries to learn a function which maps the obser-
vation to the same action as the demonstrations. On the
other hand, IRL builds a reward function based on the
demonstrations to explain the behavior and learns by rein-
forcement learning. Generative adversarial imitation learn-
ing (GAIL) (Ho and Ermon 2016) (Ng and Russell 2000;
Fu, Luo, and Levine 2017) is the state-of-the-art imitation
learning method which adopts GAN architecture and a dis-
criminator to discriminate a state-action pair is whether from
the imitator or from the expert demonstrations. Then, the im-
itator updates to fool the discriminator so that it can finally
do as well as the expert. Though being a great success, most
existing imitation learning methods require demonstrations
including expert actions between observations. This will re-
strict the imitator to learn from existing numerous demon-
strations which provides observation-only (i.e., frames) in-
formation with actions unavailable. For instance, when one
watches NBA video to learn how to play basketball, she/he
does not know the explicit knowledge of the muscle control
as well as the clear action where the players do.

Imitation from observation (IFO) can be considered as a
more practical and more natural way as humans does. Dif-
ferent from typical imitation learning, IFO uses the demon-
strations but without the actions executed by the expert. An-
other restriction of IFO is that interacting with demonstra-



Method Ground-truth Interact with Instruction-
Action Demo Oriented

GAIL X × ×
BCO × × ×

AGILE × X X
Ours × × X

Table 1: Our problem setting between others.

tions’ state is invalid. For some IRL methods, they tend to
interact with demonstrations’ state and observe what will
happen to build the target reward function. However, it is im-
practicable under reality usage since the demonstrations are
observation-only which means we cannot step any actions
on them. For instance of watching NBA video, it is impos-
sible to let the player jump with his different leg and record
as new observations. Behavioral cloning from observation
(BCO) (Torabi, Warnell, and Stone 2018a), one of the state-
of-the-art methods of IFO, plans to train an inverse dynamic
model to infer the missing actions and then adopts BC to
learn the mapping function which maps the observation into
action as the same as the demonstrations. However, due to
the lack of exploration in the environment as BC, BCO can
suffer from compounding error caused by covariate shift.

From another point of view, most of the previous task-
oriented imitation learning tasks are image-guided (Pathak
et al. 2018) which makes it inflexible during inference. To let
the agent imitate, we need to prepare an demonstration video
in advance with the objects and the scene being very similar
to the real executed environment. This kind of image-guided
imitation learning limits the practicality and the generaliz-
ability of task-oriented imitation learning. To overcome this
limitation, instruction-conditioned visual tasks have been
proposed in which learned models are successfully gener-
alized to different objects or unseen situations. Agrawal et
al. (2015) evaluates on visual question answering task and
answer the question with unseen questions or visual input.
Hatori et al. (2018) learns a robot arm to pick an object
into another place which is specified by a spoken language.
We consider that instruction-conditioned settings can make
task-oriented imitation learning more flexible and practical
where we can assign the agent to target tasks by simply giv-
ing instructions instead of preparing demonstraion videos.
Adversarial Goal-Induced Learning from Examples (AG-
ILE) (Bahdanau et al. 2019) also focuses on the instruction-
oriented imitation learning which tries to learn a reward
function from the demonstrations as IRL. However, in or-
der to learn that reward function, AGILE has to interact with
the demonstrations and collect the negative examples which
violates the restriction of IFO.

In this paper, we aim at visual-language grounding tasks
which apply classic pick-and-place problem, as illustrated
in Fig. 1. We follow the challenge IFO setting which learns
from observation-only demonstrations with ground-truth ac-
tion being unknown and interacting with demonstrations be-
ing invalid under the visual-language setting. The input con-
tains a simulator which supplies an environment that the
agent can interact with and numbers of expert demonstra-
tions to learn from. The exploration under visual-language

setting is also challenge. Since the simulator can supply a
new state but no suitable instruction with, it is unable to
explore without a target to achieve. The comparison of the
problem setting between ours and previous works is noted at
Table. 1.

We introduce a two-phase method, as illustrated in Fig. 3.
In the 1st-phase, we adopt BCO to make our target action
policy to imitate how demonstrations execute. To overcome
the lack of exploration under behavioral cloning, in the 2nd-
phase, we train an instruction module to select suitable in-
struction for the state initialized from the simulator and a re-
ward module to give the reward feedback using demonstra-
tions, what we call self-examination. With the instruction
module and reward module, we make IFO task to be able
to try-and-error under visual-language setting and improve
itself via self-examination. To evaluate the experimental re-
sult, we implement a 2D grid-world with kinds of pick-and-
place tasks. Our contributions of this paper are twofold:

1. We propose a challenge and practical instruction-oriented
IFO problem where the ground-truth action is unknown
and interacting with demonstrations is invalid.

2. We present a two-phase method to imitate the demonstra-
tions under IFO and further improve the performance via
self-examination.

Related Work
Visual-language Grounding
Visual-language grounding is widely studied and make a
number of practical applications. Agrawal et al. (2015) pro-
poses a task that does question answering based on a refer-
ence image. Anderson et al. (2018) learns to navigate in the
environment according to a series of language command.
Yu, Zhang, and Xu (2018) answers the given question via
exploring in the environment. (Hatori et al. 2018) performs
on the pick-and-place task where the target object is speci-
fied by spoken language. Chaplot et al. (2018) moves to the
object with a specific shape, color, and type from language
instruction in a 3D environment. In our work, we focus on
a variant of the classic pick-and-place problem in which all
task parameters (object, start location, and end location) are
given by a textual language, and learning supervision is pro-
vided in the form of demonstrations.

Mapping Instruction into Actions
There are numerous works on learning to map from instruc-
tions into action sequences. Artzi and Zettlemoyer (2013)
adopts CCG semantic parser to execute natural language in-
structions. Misra et al. (2014) manipulates the robot arm to
interact with the environment based on human instructions.
Misra et al. (2015) leverages the environment to induce new
lexical entries during the testing time for high-level instruc-
tions. Tellex et al. (2011) performs navigation and mobile
manipulation from instructions given to autonomous sys-
tems. Branavan et al. (2009) applies reinforcement learn-
ing to achieve the desired goal from pairs of instructions.
Most methods assume that the action sequences are given
and learn the mapping between instruction and action in a



Figure 2: Example of move, move-udlr, pick, pick-out, and pick-udlr task.

supervised scenario. However, we consider learning from
observation-only demonstrations without transition actions
known in advance, instead of learning from ground-truth
instruction-action pairs directly.

Imitation from Observation

Imitation from observation (IFO) (Liu et al. 2018; Torabi,
Warnell, and Stone1 2019; Torabi, Warnell, and Stone
2018b) should be considered for learning from expert more
naturally. Compared to typical imitation learning, IFO is
more practical and exhibits more similarity with the way
many biological agents appear to approach imitation.

Nair et al. (2017) and Pathak et al. (2018) adopt an in-
verse dynamics model through the self-supervised explo-
ration to infer demonstrations’ action. Behavioral cloning
from observation (BCO) (Torabi, Warnell, and Stone 2018a)
also infers transition actions and mimics demonstrations via
behavioral cloning. Despite being able to learn from the
observation-only demonstration, all of them are not in a
task-oriented scenario. Moreover, being based on behavioral
cloning suffers from compounding error due to covariate
shift. On the other hand, Adversarial Goal-Induced Learn-
ing from Examples (AGILE) (Bahdanau et al. 2019) con-
siders instruction-conditional IFO and learns the agent pol-
icy according to a state-reward function trained from ex-
pert demonstrations. However, in order to train the reward
function, AGILE has to interact with demonstrations’ state,
step different actions and explore in the environment, which
greatly reduces the practicality. LC-RL (Fu et al. 2019) as-
sumes the action is directly observed and also suffers from
the difficulty of interacting with the demonstrations where
they explore in it to learn the IRL. In additional, exploring is
also difficult for the instruction-conditional task because it
is unable to do exploration without a suitable instruction for
an initial state. In this paper, we present a two-phase method
which borrows the advantage from BCO in the 1st-phase and
applies an instruction module in the 2nd-phase for selecting
suitable instruction, enabling exploration to further improve
the performance.

Environment for Proposed Task
We propose a visual-language grounding problem and build
an environment with several different tasks for its evalua-
tion.

Overview The environment is target to mimic the pick-
and-place task where we have to move the robot arm (the
white border) to the specific position or pick an object into
the correct place oriented by the instruction. There are 6 ac-
tions in our environment:
• U/R/D/L: move the arm up/right/down/left
• P: pick or place the object (pick if the arm is empty, oth-

erwise place the holding object)
• S: stop which means finish the instruction

As Fig. 2, the environment is a 6x6 observable 2D grid-
word which is populated with objects of different shapes or
colors and boxes (those grids with all color filled in) of dif-
ferent colors. The specification is as following:
• Object Shape: circle, rectangle, diamond, triangle
• Object Color: red, yellow, blue
• Box Color: orange, green, purple, pink, brown, gray, cyan
All the objects and boxes are randomly placed in the grid-
world.

During the evaluation, we will check the final state af-
ter the action S or achieving the maximum number (40) of
action. The reason why we need a stop action is that for a
grounding task, the agent has to know when or what is fin-
ish. There can be a probable case that agent achieves the
target during the moving process but finally moves out, and
it should also be seen as a failure.

Task We propose 5 tasks, move, move-udlr, pick, pick-out,
and pick-udlr for different situations of pick-and-place prob-
lems.
• move: move the robot arm to the object
• move-udlr: move the robot arm to the up/down/left/right

side of the object
• pick: pick the object into the box
• pick-out: take out the object from the box into another box
• pick-udlr: pick the object to the up/down/left/right side of

another object



Figure 3: The overview architecture and training flow of both 1st-phase and 2nd-phase.

As BabyAI (Chevalier-Boisvert et al. 2019), the related
instructions are generated by templates (1 for move, 8 for
move-udlr, 12 for pick, 36 for pick-out, 24 for pick-udlr)
with different object shapes, object colors, and box colors.
And the corresponding ground-truth demonstrations are also
automatically produced where all paths are the shortest one.
To avoid the ambiguity, we make sure that there is only one
valid object or box mentioned in the instruction. For exam-
ple of pick-out task in Fig. 2, there are two blue rectangles
in the environment but only one in the brown box, therefore,
it will not cause any ambiguity.

Problem Definition A demonstration D is composed of
consecutive state images {s1, s2, s3, ...} and a target instruc-
tion t. With the demonstrations {D1, D2, ...}, for each task,
we have to train an action policy φ to decide an action a to
step, given the current state s and instruction t.

Methodology
The overall architecture of our proposed method which
contains 2 phases training is illustrated in Fig. 3. In the
1st-phase, motivated by BCO (Torabi, Warnell, and Stone
2018a), we first randomly step the simulator and collect nu-
merous state-action pairs to train an inverse module. Then,
we apply the inverse module to infer the unknown action se-
quences of demonstrations. Finally, we can make the action
policy to imitate the demonstrations by predicting the action
labeled using the inverse module, given the state image and
the target instruction.

In the 2nd-phase, in order to overcome the lack of ex-
ploration under behavioral cloning, we train an instruction
module and reward module using demonstrations. The in-
struction module is used to select a suitable instruction for
a state initialized from the simulator, providing the action
policy a goal to achieve and explore by. The reward module
gives out the reward feedback between an action and state-
instruction pair, then update the action policy. With the in-
struction module and reward module, we make IFO task to
be able to try-and-error under visual-language setting and
improve itself via self-examination.

Figure 4: The architecture of our action policy which adopts
gated-attention as (Chaplot et al. 2018).

1st-phase
As the left part of Fig. 3, the 1st-phase trains an inverse
model to label the actions in demonstrations where the ac-
tion policy φ can behavioral cloning from.

Inverse Module We first collect numerous state-action
pairs (si, si+1, ai) by randomly step the simulator. Then, we
can train the inverse module inv supervisely as:

inv(si, si+1) = a′,

where a′ should be ai. With the inverse module, the missing
actions in the demonstrations can be inferred by inv predic-
tion.

Imitation from Demonstration With actions labeled by
inv, we apply behavioral cloning to train an action policy φ
which imitates how demonstrations step action:

φ(s, t) = a′,

where s is the state image, t is the target instruction, and a′
should be as the same as labeled action.

As Fig. 4, we adopt gated-attention (Chaplot et al. 2018)
between the state image and the instruction to enhance the
performance of inv as following:

GA(s, t) = CNN(s)� h(GRU(t)),

where CNN extracts the visual feature of the state image,
GRU models the feature of the input instruction, and h is



a linear layer with sigmoid activation. Assuming the CNN
feature size ds and shape H ×W , h will project the GRU
feature into size ds and then extend it into H ×W so that it
can do Hadamard product with CNN feature which attends
the instruction on specific attributes of the image. The fusion
feature from gated-attention then is used to predict the action
by several linear layers.

2nd-phase
Although the 1st-phase is able to imitate the demonstrations,
the lack of exploration can suffer from compounding error
caused by covariate shift. However, exploration in the en-
vironment under visual-language setting is not trivial. Since
the simulator can only initialize the state, it is hard to explore
with the target instruction unknown.

The 2nd-phase trains an instruction module ins to select a
suitable instruction for an initial state and a reward module
rwd to give out the feedback for updating the action policy.

Instruction Module For a state initialized from the simu-
lator, the instruction module ins selects a suitable instruction
from the instruction pool:

ins(s, {t1, t2, ...}) = t,

where {t1, t2, ...} is the instruction pool which consists of
instructions in the demonstrations. To make the target in-
struction robust, we choose to select an instruction instead
of generating one.

The instruction module ins is a binary classifier which
judges the suitability of a state-instruction pair:

ins(s, t) = [0, 1].

We consider the state-instruction pairs in the demonstrations
as the positive pairs and the different instructions chosen
randomly as the negative pairs. We also remove out the prob-
able false-negative pairs as (Bahdanau et al. 2019) and train
ins using binary cross-entropy loss. And we select an in-
struction for a state as a suitable one if the output of ins more
than 0.8. If there is no one suitable, we will let the simulator
initialize a new state and select a suitable instruction again.
The architecture of ins also adopts the gated-attention.

Reward Module The reward module rwd is to judge an
action is correct for a state-instruction pair. As instruction
module ins, rwd is also a binary classifier:

rwd(s, t, a) = [0, 1].

We consider the actions labeled by the inverse module inv in
the demonstrations as the positive cases and randomly differ-
ent actions as negative cases during pre-training. Then, rwd
is trained with the following self-examination where the ac-
tions from action policy φ are viewed as the negative cases.
rwd also applies gated-attention and is trained using binary
cross-entropy loss.

Improvement via Self-Examination With the instruction
module inv and the reward module rwd, we can further im-
prove the action policy φ in a self-examination scenario.

Firstly, we let the simulator initialize a new state s and
select an instruction t by the instruction module ins. Then,

Algorithm 1 self-examination of 2nd-phase
φ: action policy
ins: instruction module
rwd: reward module

while self-examination do
s← the simulator initializes a new state
t← select a suitable instruction by ins

{(s1, t, a1), (s2, t, a2), ...} ← adopt φ to rollout (s, t)
{(s1, t, a1, r1), (s2, t, a2, r2), ...} ← rwd gives reward
update φ with reward pairs via Policy Gradient

end while

we apply action policy φ to predict an action a to step and
rollout. After rollout, we have a complete execution trajec-
tory T = {(s1, t, a1), (s2, t, a2), (s3, t, a3)...}. We adopt the
reward module rwd to give reward feedback for each step.
Finally, we can update φ by Policy Gradient (Sutton et al.
1999) as typical reinforcement learning.

By repeating the above process, we can try-and-error with
different states and different instructions under the visual-
language setting, further improving the target action policy
φ. The procedure of the self-examination is described in Al-
gorithm 1.

Experimental Results
In this section, we present the experimental results of our
proposed method for move, move-udlr, pick, pick-out, and
pick-udlr task. We first describe the experimental settings
and show the quantitative results of both 1st-phase and 2nd-
phase. Then, we investigate the performance of our instruc-
tion module for 2nd-phase and the method generalizability
under zero-shot setting. Finally, we demonstrate the execu-
tion and the improved effect of 2nd-phase via case study.

Experimental Settings
We evaluate our proposed method on move, move-udlr, pick,
pick-out, and pick-udlr tasks, which are described in above
section. There are 80K demonstrations of each task for 1st-
phase imitation. For 2nd-phase, we adopt the instruction
module to select 10K suitable pairs of state-instruction for
the following exploration.

In our implementation, we apply a 4-layer convolutional
neural network (CNN) with kernel size 3, feature size 32,
stride 2, and padding 1 to extract the visual feature of the
state image. We adopt bidirectional Gated Recurrent Units
(Chung et al. 2014) (bi-GRU) with hidden size 64 to model
the input instruction and the word embedding with size 8 is
randomly initialized, then trained with the whole network.
During training, we set the dropout rate 0.25, the learning
rate of 1st-phase 8e-4, and the learning rate of 2nd-phase
3e-5. We train our method using Adam optimizer (Kingma
and Ba 2015) and implement it under PyTorch. For the base-
line, we see 1st-phase as the same as BCO (Torabi, Warnell,
and Stone 2018a), which is the state-of-the-art method of
IFO with ground-truth action unknown and interacting with
demonstrations being invalid.



Task 1st-phase 2nd-phase [5K] 2nd-phase [10K]
move 76.6% 79.4% (+2.8) 78.4% (+1.8)

move-udlr 69.0% 73.4% (+4.4) 72.4% (+3.4)
pick 13.0% 15.0% (+2.0) 15.4% (+2.4)

pick-out 32.8% 34.0% (+1.2) 34.6% (+1.8)
pick-udlr 22.6% 26.0% (+3.4) 24.8% (+2.2)

Table 2: Success rate of both 1st-phase and 2nd-phase for
different tasks.

Task Instruction Suitable Rate
move 91.725%

move-udlr 81.145%
pick 90.190%

pick-out 77.940%
pick-udlr 76.810%

Table 3: Suitable rate of instructions selected by our instruc-
tion module for different tasks.

Quantitative Results
Table. 2 shows the success rate of both 1st-phase and 2nd-
phase. For the baseline BCO, which is also the 1st-phase,
it achieves 76.6% and 69.0% for simpler task move and
move-udlr, and 13.0%, 32.8%, and 22.6% for more diffi-
cult task pick, pick-out, and pick-udlr, respectively. For 2nd-
phase, we select 5K or 10K state-instruction pairs for explo-
ration. The result shows that no matter 5K or 10K, 2nd-phase
improves 1.2-4.4 points of success rate which means explo-
ration in the environment actually benefits to all tasks. It also
shows that not more state-instruction pairs always conduce
to better improvement which is task-dependent and balanced
between the imitation (1st-phase) and the exploration (2nd-
phase).

Detailed Analysis
Selected Instructions Suitability To make sure the in-
structions selected by our instruction module are suitable for
the initial state during 2nd-phase exploration, we calculate
the suitable rate of state-instruction pair. An instruction can
be seen as suitable if and only if all instruction-mentioned
objects also exist in the state, no ambiguity, and the target
can be achieved successfully. Some case studies can be seen
in following section.

As shown in Table. 3, the suitable rate for all tasks is larger
than 76% which means the instruction module actually se-
lects suitable instructions for initial states from the simula-
tor, making it possible to explore in the environment under
instruction-oriented task. Our instruction module gives IFO
task an ability to try-and-error under vision-and-language
setting, and then the reward module sends out the feedback
to further improve the action policy.

Zero-shot Generalization To investigate the generability
of visual-language grounding, we evaluate under zero-shot
setting where new combinations of attribute-object pairs are
unseen in the training instructions. For example, there are
red circle and yellow rectangle in the training but contains
yellow circle in the testing instructions. We also adopt 80K
as demonstrations for 1st-phase and select 5K as exploration

Task 1st-phase 2nd-phase
move 62.8% 68.4% (+5.6)

move-udlr 56.8% 60.6% (+3.8)
pick 11.2% 14.6% (+3.4)

pick-out 27.4% 29.8% (+2.4)
pick-udlr 19.8% 21.0% (+1.2)

Table 4: Success rate under zero-shot setting of both 1st-
phase and 2nd-phase for different tasks.

instructions for 2nd-phase.
Table. 4 shows the result. Even if under zero-shot setting,

we can see that there is only little performance drop for 1st-
phase. And the 2nd-phase exploration can improve 1.2%-
5.6% success rate over 1st-phase as the normal setting.

Case Study
Fig. 5 demonstrates some suitable and unsuitable cases for
our instruction module. In general, we can see that all
mentioned objects in the instruction also exist in the state.
There are also some difficult situations where our instruc-
tion module cannot handle perfectly. For instance, the am-
biguity (move), the target position being occupied or out-of-
boundary (move-udlr, pick, pick-udlr), or being unachiev-
able (pick-out). However, we argue that the instruction mod-
ule is still effective. At first, according to Table. 3, most
of the selected instructions are suitable for the initial state
which gives the action policy a correct goal to achieve.
Moreover, though the target positions are unachievable for
some cases, the reward feedback during 2nd-phase also ben-
efits to action policy which improves the final success rate.

The executions in the comparison between 1st-phase and
2nd-phase are shown in Fig. 6. Since the action procedures
in the demonstrations are all shortest path, the 1st-phase can
only execute as shortest. While, due to the opportunity of ex-
ploration, the 2nd-phase is able to execute as a different path
but also achieve the target successfully (the cases on the first
row). In addition, the 1st-phase imitates how demonstrations
step and only sees the perfect actions which lead to being
stuck and stepping back and forth repeatedly. However, after
the try-and-error over the environment during 2nd-phase, the
action policy can achieve the goal (the cases on the second
row). Apart from the stuck problem, the 2nd-phase also ben-
efits to the problem of the wrong target object or the wrong
target position (the cases on the third row).

Conclusion and Future Work
We aim at imitation from observation-only demonstrations
with ground-truth action being unknown and interacting
with demonstrations being invalid under visual-language
setting. We propose a two-phase method which first im-
itates how the demonstrations step. In the 2nd-phase, we
select suitable instructions for initial states and do self-
examination to further improve the action policy. The result
shows that the 2nd-phase outperforms the baseline by 1.2-
4.4 point margins of success rate for several tasks. Although
we validate our method on the virtual environment, further
study is needed for real-world applications, such as voice-
control robot learning via human demonstration.



Figure 5: Case study of instructions from the instruction module.

Figure 6: Case study of execution in the comparison between 1st-phase and 2nd-phase.



References
Agrawal, A.; Lu, J.; Antol, S.; Mitchell, M.; Zitnick, C. L.;
Batra, D.; and Parikh, D. 2015. VQA: visual question an-
swering. In ICCV.
Anderson, P.; Wu, Q.; Teney, D.; Bruce, J.; Johnson, M.;
Snderhauf, N.; Reid, I.; Gould, S.; and van den Hengel,
A. 2018. Vision-and-language navigation: interpreting
visually-grounded navigation instructions in real environ-
ments. In CVPR.
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning, B.
2009. A survey of robot learning from demonstration. In
Robot. Auton. Syst.
Artzi, Y., and Zettlemoyer, L. 2013. Weakly supervised
learning of semantic parsers for mapping instructions to ac-
tions. In TACL.
Bahdanau, D.; Hill, F.; Leike, J.; Hughes, E.; Hosseini, A.;
Kohli, P.; and Grefenstette, E. 2019. Learning to understand
goal specifications by modelling reward. In ICLR.
Bain, M., and Sammut, C. 1995. A framework for be-
havioural cloning. In Machine Intelligence.
Branavan, S.; Chen, H.; Zettlemoyer, L. S.; and Barzilay, R.
2009. Reinforcement learning for mapping instructions to
actions. In ACL.
Chaplot, D. S.; Sathyendra, K. M.; Pasumarthi, R. K.; Ra-
jagopal, D.; and Salakhutdinov, R. 2018. Gated-attention
architectures for task-oriented language grounding. In AAAI.
Chevalier-Boisvert, M.; Bahdanau, D.; Lahlou, S.; Willems,
L.; Saharia, C.; Nguyen, T. H.; and Bengio, Y. 2019.
BabyAI: first steps towards grounded language learning with
a human in the loop. In ICLR.
Chung, J.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2014. Em-
pirical evaluation of gated recurrent neural networks on se-
quence modeling. In NIPS Workshop.
Fu, J.; Korattikara, A.; Levine, S.; and Guadarrama, S. 2019.
From language to goals: Inverse reinforcement learning for
vision-based instruction following. In ICLR.
Fu, J.; Luo, K.; and Levine, S. 2017. Learning robust re-
wards with adverserial inverse reinforcement learning. In
ICLR.
Hatori, J.; Kikuchi, Y.; Kobayashi, S.; Takahashi, K.;
Tsuboi, Y.; Unno, Y.; Ko, W.; and Tan, J. 2018. Interac-
tively picking real-world objects with unconstrained spoken
language instructions. In ICRA.
Ho, J., and Ermon, S. 2016. Generative adversarial imitation
learning. In NIPS.
Kingma, D. P., and Ba, J. 2015. Adam: a method for stochas-
tic optimization. In ICLR.
Liu, Y.; Gupta, A.; Abbeel, P.; and Levine, S. 2018. Imi-
tation from observation: Learning to imitate behaviors from
raw video via context translation. In ICRA.
Misra, D. K.; Sung, J.; Lee, K.; and Saxena, A. 2014. Tell
me dave: context-sensitive grounding of natural language to
manipulation instructions. In RSS.

Misra, D. K.; Tao, K.; Liang, P.; and Saxena, A. 2015.
Environment-driven lexicon induction for high-level instruc-
tions. In ACL.
Nair, A.; Chen, D.; Agrawal, P.; Isola, P.; Abbeel, P.; Malik,
J.; and Levine, S. 2017. Combining self-supervised learning
and imitation for vision-based rope manipulation. In ICRA.
Ng, A. Y., and Russell, S. J. 2000. Algorithms for inverse
reinforcement learning. In ICML.
Pathak, D.; Mahmoudieh, P.; Luo, G.; Agrawal, P.; Chen,
D.; Shentu, Y.; Shelhamer, E.; Malik, J.; Efros, A. A.; and
Darrell, T. 2018. Zero-shot visual imitation. In ICLR.
Pomerleau, D. A. 1989. ALVINN: an autonomous land
vehicle in a neural network. In NIPS.
Russell, S. J., and Norvig, P. 1995. Artificial intelligence: A
modern approach. In Prentice-Hall.
Schaal, S. 1999. Is imitation learning the route to humanoid
robots? In Trends in Cognitive Sciences.
Sutton, R. S.; McAllester, D.; Singh, N. S.; and Mansour, Y.
1999. Policy gradient methods for reinforcement learning
with function approximation. In NIPS.
Tellex, S.; Kollar, T.; Dickerson, S.; Walter, M. R.; Banerjee,
A. G.; Teller, S.; and Roy, N. 2011. Understanding natural
language commands for robotic navigation and mobile ma-
nipulation. In AAAI.
Torabi, F.; Warnell, G.; and Stone1, P. 2019. Recent ad-
vances in imitation learning from observation. In IJCAI.
Torabi, F.; Warnell, G.; and Stone, P. 2018a. Behavioral
cloning from observation. In IJCAI.
Torabi, F.; Warnell, G.; and Stone, P. 2018b. Generative
adversarial imitation from observation. In arXiv preprint
arXiv:1807.06158.
Tsitsiklis, J. N. 1994. Asynchronous stochastic approxima-
tion and q-learning. In Machine Learning.
Yu, H.; Zhang, H.; and Xu, W. 2018. Interactive grounded
language acquisition and generalization in a 2D world. In
ICLR.


