
Diversity-Driven Exploration Strategy for Deep
Reinforcement Learning

Zhang-Wei Hong, Tzu-Yun Shann, Shih-Yang Su, Yi-Hsiang Chang, Tsu-Jui Fu,
and Chun-Yi Lee

National Tsing Hua University
{williamd4112,arielshann,at7788546,shawn420,rayfu1996ozig,cylee}

@gapp.nthu.edu.tw

Abstract

Efficient exploration remains a challenging research problem in reinforcement
learning, especially when an environment contains large state spaces, deceptive
or sparse rewards. To tackle this problem, we present a diversity-driven approach
for exploration, which can be easily combined with both off- and on-policy rein-
forcement learning algorithms. We show that by simply adding a distance measure
regularization to the loss function, the proposed methodology significantly en-
hances an agent’s exploratory behavior, and thus prevents the policy from being
trapped in local optima. We further propose an adaptive scaling strategy to enhance
the performance. We demonstrate the effectiveness of our method in huge 2D
gridworlds and a variety of benchmark environments, including Atari 2600 and
MuJoCo. Experimental results validate that our method outperforms baseline
approaches in most tasks in terms of mean scores and exploration efficiency.

1 Introduction
In recent years, deep reinforcement learning (DRL) has attracted attention in a variety of application
domains, such as game playing [1, 2] and robot navigation [3]. However, exploration remains a major
challenge for environments with large state spaces, deceptive local optima, or sparse reward signals.
In an environment with deceptive rewards, an agent can be trapped in local optima, and never discover
alternate strategies to find larger payoffs. For example, in HalfCheetah of MuJoCo [4], the agent
quickly learns to flip on its back and then “wiggles” its way forward, which is a sub-optimal policy [5].
In addition, environments with only sparse rewards provide few training signals, making it hard for
agents to discover feasible policies. A common approach for exploration is to adopt simple heuristic
methods, such as ε-greedy [1, 6] or entropy regularization [7]. However, such strategies are unlikely
to yield satisfactory results in tasks with deceptive or sparse rewards [8, 9]. A more sophisticated line
of methods provides agents with bonus rewards whenever they visit a novel state. For example, [10]
uses information gain as a measurement of state novelty. In [11], a counting table is used to estimate
the novelty of a visited state. Neural density model [12] has also been utilized to measure bonus
rewards for agents. In [13, 14], the novelty of a state is estimated from the prediction errors of their
system dynamics models. These methods, however, often require statistical or predictive models to
evaluate the novelty of a state, and therefore increase the complexity of the training procedure.

In order to deal with the issue of complexity, a few researchers attempts to embrace the idea of random
perturbation from evolutionary algorithms [5, 8]. By adding random noise to the parameter space,
their methods allow RL agents to perform exploration more consistently without introducing extra
computational costs. Despite their simplicity, these methods are less efficient in large state spaces, as
random noise changes the behavioral patterns of agents in an unpredictable fashion [5, 8]. In [15],
the authors propose to address the problem by training multiple value functions with bootstrap sub-
samples. However, it requires extra model parameters, causing additional computational overheads.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

In this paper, we present a diversity-driven exploration strategy, a methodology that encourages a
DRL agent to attempt policies different from its prior policies. We propose to use a distance measure
to modify the loss function to tackle the problems of large state spaces, deceptiveness and sparsity
in reward signals. The distance measure evaluates the novelty between the current policy and a
set of prior policies. Our method draws inspiration from novelty search [16–18], which promotes
population-based exploration by encouraging novel behaviors. Our method differs from it in several
aspects. First, we cast the concept of novelty search from evolution strategies into DRL frameworks.
Second, we train a single agent instead of a population. Third, novelty search ignores rewards
altogether, while ours optimizes the policy using both the reward signals and the distance measure. A
work parallel to ours similarly employs novelty search for exploration [19]. However, their method
still lies in the realm of genetic algorithms. We demonstrate that our methodology is complementary
and easily applicable to most off- and on-policy DRL algorithms. We further propose an adaptive
scaling strategy, which dynamically scales the effect of the distance measure for enhancing the overall
performance. The adaptive scaling strategy consists of two methods: a distance-based method and
a performance-based method. The former method adjusts the scaling factor based on the distance
measure, while the latter method scales it according to the performances of the prior policies.

To validate the effectiveness of the proposed diversity-driven exploration strategy, we first demon-
strate that our method does lead to better exploratory behaviors in 2D gridworlds with deceptive or
sparse rewards. We compare our method against a number of contemporary exploration approaches
(i.e., the baselines). Our experimental results show that while most baseline agents employing the
contemporary exploration approaches are easily trapped by deceptive rewards or fail in the sparse
reward settings, the agents employing our exploration strategy are able to overcome aforementioned
challenges, and learn effective policies even when the reward signals are sparse or when the environ-
ments contain deceptive rewards. We have further evaluated our method in a variety of benchmark
environments, including Atari 2600 [20] and MuJoCo [4]. We performed various experiments to
demonstrate the benefits of diversity-driven exploration strategy. We show that the proposed method-
ology is superior to, or comparable with the baselines in terms of mean scores and learning time.
Moreover, we provide a comprehensive ablative analysis of the proposed adaptive scaling strategy,
and investigate the impact of different scaling methods on the learning curves of the DRL agents.

The main contributions of this paper are summarized as follows:

• A simple, effective, and efficient exploration strategy applicable to most off- and on-policy
DRL algorithms.

• A promising way to deal with large state spaces, deceptive rewards, and sparse reward
settings.

• A loss function designed for encouraging exploration by the use of a distance measure
between the current policy and a limited set of the most recent policies.

• An adaptive scaling strategy consisting of two scaling methods for the distance measure. It
enhances the overall performance.

• A comprehensive comparison between the proposed methodology and a number of contem-
porary approaches, evaluated on three different environments.

The remainder of this paper is organized as the following. Section 2 provides background mate-
rial. Section 3 walks through the proposed exploration strategy in detail. Section 4 presents the
experimental setup and results. Section 5 discusses the related work. Section 6 concludes this paper.

2 Background
In this section, we review the concept of RL, and the off- and on-policy methods used in this paper.

2.1 Reinforcement Learning

RL is a method to train an agent to interact with an environment E . An RL agent observes a state s
from the state space S of E , takes an action a from the action space A according to its policy π(a|s),
and receives a reward r(s, a). E then transits to a new state s′. The agent’s objective is to maximize
its discounted accumulated rewards Gt =

∑T
τ=t γ

τ−tr(sτ , aτ), where t is the current timestep,
γ ∈ (0, 1] the discount factor, and T the horizon. The action-value function (i.e., Q-function) of a
given policy π is defined as the expected return starting from a state-action pair (s, a), expressed as
Q(s, a) = E

[
Gt|st = s, at = a, π].

2

2.2 Off-Policy Methods

Off-policy methods decouple the behavior and target policies, enabling an agent to learn using
samples collected by arbitrary policies or from an experience replay [1]. We briefly review two
representative off-policy methods, namely Deep Q-Network (DQN) [1] and Deep Deterministic
Policy Gradient (DDPG) [21].

DQN. DQN is a deep neural network (DNN) parameterized by θ for approximating the optimal
Q-function. For exploration, it follows an ε-greedy strategy described in [1]. The network is trained
with samples drawn from an experience replay Z, and is updated according to the loss function
LDQN expressed as:

LDQN = Es,a,r,s′∼U(Z)

[
(y −Q(s, a, θ))2

]
, (1)

where y = r(s, a) + γmaxa′ Q(s′, a′, θ−), U(Z) is a uniform distribution over Z, and θ− the
parameters of the target network. θ− is updated by θ at predefined intervals.

DDPG. DDPG is an actor-critic approach based on the deterministic policy gradient (DPG) algo-
rithm [22] that learns policies over continuous action spaces. The critic estimates the Q-function
similarly as that of DQN, with a minor modification to y, expressed as y = r(s, a) + γQ(s′, π(s′)).
The actor is trained to maximize the critic’s estimated Q-values, with a loss function Lactor given by:

Lactor = −Es
[
Q(s, π(s))

]
, (2)

where s is sampled from Z. DDPG uses a stochastic policy π̂(s) = π(s) +N for exploration, where
N is a noise process. N can be either normally distributed or generated by the Ornstein-Uhlenbeck
(OU) process [21].

2.3 On-Policy Methods

On-policy methods update their value functions based on the samples generated by the current policy.
We review a state-of-the-art on-policy method called Advantage Actor-Critic (A2C) [7, 23], which is
evaluated and compared to the proposed methodology in Section 4. A2C is a synchronous variant
of Asynchronous Advantage Actor-Critic (A3C) [7], which trains agents in parallel, on multiple
instances of the environment. A2C offers better utilization of GPUs than A3C. Similarly, the critic
estimates the value function V (s). The actor optimizes π(a|s, θ) with respect to θ along the direction:

∇θ log π(a|s, θ)(Gt − V (s)) + β∇θH(π(a|s, θ)), (3)

where β is a hyperparameter for controlling the strength of the entropy H(π(a|s, θ)). A2C uti-
lizes H(π(a|s, θ)) to encourage exploratory behaviors, as well as prevent agents from converging
prematurely to sub-optimal policies.

3 Diversity-Driven Exploration Strategy
The main objective of the proposed diversity-driven exploration strategy is to encourage a DRL agent
to explore different behaviors during the training phase. Diversity-driven exploration is an effective
way to motivate an agent to examine a richer set of states, as well as provide it with an approach to
escape from sub-optimal policies. It can be achieved by modifying the loss function LD as follows:

LD = L− Eπ′∈Π′ [αD(π, π′)], (4)

where L indicates the loss function of any arbitrary DRL algorithms, π is the current policy, π′ is a
policy sampled from a limited set of the most recent policies Π′, D is a distance measure between π
and π′, and α is a scaling factor for D. The second term in eq. (4) encourages an agent to update
π with gradients towards directions such that π diverges from the samples in Π′. Eq. (4) provides
several favorable properties. First, it drives an agent to proactively attempt new policies, increasing
the opportunities to visit novel states even in the absence of reward signals from E . This property
is especially useful in sparse reward settings, where the reward is zero for most of the states in
S. Second, the distance measure D motivates exploration by modifying an agent’s current policy
π, instead of altering its behavior randomly. Third, it allows an agent to perform either greedy or
stochastic policies while exploring effectively in the training phase. For greedy policies, since D
requires an agent to adjust π after each update, the greedy action for a state may change accordingly,
potentially directing the agent to explore unseen states. This property also ensures that the agent acts
consistently in the states it has been familiar with, as π and π′ yield the same outcomes for those

3

states. These three properties allow a DRL agent to explore an environment in a systematic and
consistent manner. The choice of D can be KL-divergence, L2-norm, or mean square error (MSE).
The interested reader is referred to our supplementary material for more details of how the distance
measure is selected. In the subsequent sections, we explain how diversity-driven exploration can be
combined with off-policy and on-policy methods, for both discrete and continuous control problems.

3.1 Implementation on Off-Policy Methods

Most off-policy DRL algorithms [1, 21] adopt the experience replay mechanism to stabilize the learn-
ing process. We show that diversity-driven exploration can be readily applied to existing algorithms
for both discrete (DQN) and continuous (DDPG) control tasks, with only a few modifications to the
experience replay buffer Z.

Div-DQN. We make the following changes to the DQN algorithm. First, we additionally store the
past Q-values (denoted as Q′(s, a)) in Z. Second, for the sake of defining a proper distance measure,
we use a probabilistic formulation as in [5] by applying the softmax function over the predicted
Q-values. We therefore define π(a|s) = exp(Q(s, a))/Σa′∈A exp(Q(s, a′)). π′(a|s) is defined
similarly but uses Q′(s, a) instead. We adopt KL-divergence as the distance measure, denoted as
DKL. Eq. (4) is rewritten as:

LD = L− EQ̂(s,a)∼U(Z)[αDKL(π(a|s)||π′(a|s))], (5)

where α can be either a predefined value, or determined by the adaptive methods in Section 3.3.

Div-DDPG. For diversity-driven DDPG, we use the actions stored in Z, and modify Eq. (4) as:

LD = L− Es,a′∼U(Z)[αD(π(s), a′)], (6)

where a′ is a prior action sampled from Z. The distance measure D here is simply an MSE function
between π(s) and a′. The value of α is determined in a similar fashion as that of DQN. Please
note that we do not use the stochastic exploration policy mentioned in Section 2.2, since D alone is
sufficient enough for improving the exploratory behavior.

3.2 Implementation on On-Policy Methods

Apart from off-policy methods, we explain how our methodology can be applied to on-policy methods.

Div-A2C. As A2C has no experience replay, we maintain the n most recent policies for calculating
the distance measure D. In general cases, n = 5 is sufficient to yield satisfactory performance. The
loss function LD is thus expressed as:

LD = L− Es∼τ [Eπ′∼
∏[απ′DKL(π(s), π′(s))]], (7)

where τ represents the batch of on-policy data,
∏

is the set of prior polices, and π′ is a prior policy.
KL-divergence is used as the distance measure. We describe in detail a performance-based method to
scale απ′ for each individual prior policy π′ in Section 3.3.

3.3 Adaptive Scaling Strategy

Although α can be linearly annealed over time, we find this solution less than ideal in some cases.
We demonstrate these cases in experimental results provided in Section 4. To update α in a way that
leads to better overall performance, we consider two adaptive scaling methods: the distance-based
and the performance-based methods. In our experiments, the off-policy algorithms use only the
distance-based method, while the on-policy algorithm uses both methods for scaling α.

Distance-based. Similar to [5], we relate α to the distance measure D. We adaptively increase or
decrease the value of α depending on whether D is below or above a certain threshold δ. The simple
approach we use to update α for each training iteration is defined as:

α :=

{
1.01α, if E

[
D(π, π′

)
] ≤ δ

0.99α, otherwise
. (8)

Please note that different values of δ are applied to different methods in our experiments. The method
for determining the value of δ is described in the supplementary material.

4

Table 1: Evaluation results of the gridworld experiments.

Deceptive Reward
50× 50 100× 100 200× 200

Vanilla-DQN 0.010 0.010 0.010
Noisy-DQN 0.009 0.004 0.010
Div-DQN 0.202 0.604 0.208

Sparse Reward
50× 50 100× 100 200× 200

Vanilla-DQN 0.300 0.100 0.000
Noisy-DQN 0.400 0.200 0.000
Div-DQN 1.000 1.000 1.000

Performance-based. While the distance-based scaling method is straightforward and effective, it
alone does not lead to the same performance for on-policy algorithms. The rationale behind this is
that we only use the five most recent policies (n = 5) to compute LD, which often results in high
variance, and instability during the training phase. Off-policy algorithms do not suffer from this issue,
as they can utilize experience replay to provide a sufficiently large set of past policies. Therefore, we
propose to further adjust the value of α for on-policy algorithms according to the performance of past
policies to stabilize the learning process. We define αi in either one of the following two strategies:

απ′ := −(2(
P (π′)− Pmin
Pmax − Pmin

)− 1) (Proactive); απ′ := 1.0− P (π′)− Pmin
Pmax − Pmin

(Reactive), (9)

where P (π′) denotes the average performance of π′ over five episodes, and Pmin and Pmax represent
the minimum and maximum performance attained by the set of past policies Π′. Note that απ′ falls
in the interval [−1, 1] for the proactive strategy, and [0, 1] for the reactive one. The proactive strategy
incentivizes the current policy π to converge to the high-performing policies in Π′, while keeping
away from the poor ones. On the other hand, the reactive strategy only motivates π to stay away from
the underperforming policies. We provide a comprehensive ablative analysis for these strategies in
Section 4. Note that we apply both eq. (8) and eq. (9) to the on-policy methods in our experiments.

3.4 Clipping of Distance Measure

In some cases, the values of D become extraordinarily high, causing instability in the training phase
and thus degrading the performance. To stabilize the learning process, we clip D to be between −c
and c, where c is a predefined constant. Please refer to our supplementary material for more details.

4 Experiments
In this section, we present our experimental results and discuss their implications. We first provide
an overview of the experimental setup and the environments we used to evaluate our models in
Section 4.1. In Sections 4.2∼4.4, we report results in three different environments, respectively. We
further provide an ablative analysis for the proposed methodology in the supplementary material.

4.1 Experimental Setup

4.1.1 Environments

Gridworld. To provide an illustrative example of our method’s effectiveness, we create a huge 2D
gridworld (Fig. 1) with two different settings: (1) sparse reward setting, and (2) deceptive reward
setting. In both settings, the agent starts from the top-left corner of the map, with an objective to reach
the bottom-right corner to obtain a reward of 1. At each timestep, the agent observes its absolute
coordinate, and chooses from four possible actions: move north, move south, move west, and move
east. An episode terminates immediately after a reward is collected. In the deceptive reward setting
illustrated in Fig. 1 (a), the central area of the map is scattered with small rewards of 0.001 to distract
the agent from finding the highest reward in the bottom-right corner. On the other hand, in the sparse
reward setting depicted in Fig. 1 (b), there is only a single reward located at the bottom-right corner.

Atari 2600. For discrete control tasks, we perform experiments in the Arcade Learning Environment
(ALE) [20]. We select eight games varying in their difficulty of exploration according to [24]. In
each game, the agent receives 84× 84× 4 stacked grayscale images as inputs, as described in [1].

MuJoCo. For continuous control tasks, we conduct experiments in environments built on the MuJoCo
physics engine [4]. We select a number of robotic control tasks to evaluate the performance of the
proposed methodology and the baseline methods. In each task, the agent takes as input a vector of
physical states, and generates a vector of action values to manipulate the robots in the environment.

5

Figure 1: Gridworlds. Figure 2: State-visitation counts of the gridworlds.

4.1.2 Baseline Methods

The baseline methods (or simply “baselines") adopted for comparison vary within different environ-
ments. For discrete control tasks, we select vanilla DQN [1], vanilla A2C [7], as well as their noisy
net [8] and Curiosity-driven [14] variants (denoted by Noisy-DQN/A2C and Curiosity-DQN/A2C,
respectively) as the baselines. For continuous control tasks, vanilla DDPG [21] and its parameter
noise [5] variant (referred to as parameter noise DDPG) are taken as the baselines for comparison.
All of these baselines are implemented based on OpenAI Baselines1. For each method, we adopt the
setting that yields the highest overall performance during hyperparameter search. Our hyperparameter
settings are provided in the supplementary material. Please note that for DQN and A2C, we choose
their noisy net variants for comparison instead of the parameter noise ones, as the former variants
lead to relatively better performance. On the other hand, we select parameter noise DDPG as our
baseline rather than the noisy net variant, as the authors of [8] do not provide their implementations.

4.2 Exploration in Huge Gridworld

In this experiment, we evaluate different methods in 2D gridworlds with three different sizes: 50×50,
100× 100, and 200× 200. We consider only vanilla DQN and Noisy-DQN in this experiment. We
report the performance of each method in terms of their average rewards in Table. 1, where the
average rewards are evaluated over the last ten episodes. We plot the state-visitation counts of all
methods (Fig. 2) on 200× 200 gridworlds, in order to illustrate how agents explore the state space.

Deceptive reward. Fig. 1 (a) illustrates the deceptive gridworld. As shown in Table. 1, Div-DQN
outperforms both vanilla and Noisy-DQN in this setting. From the state-visitation counts (Fig. 2
(a)(b)(c)), it can be observed that baseline methods are easily trapped in the area near the deceptive
rewards, and have never visited the optimal reward in the bottom-right corner. On the other hand,
it can be seen from Fig. 2 (c) that Div-DQN is able to escape from the area of deceptive rewards,
explores all of the four sides of the gridworld, and successfully discovers the optimal reward of one.

Sparse reward. Fig. 1 (b) illustrates the sparse gridworld. From Table. 1, we notice that the average
rewards of Noisy-DQN increase slightly as compared to those in the deceptive reward setting. As
the size of gridworld increases, it fails to find the location of the reward. In contrast, Div-DQN
consistently achieves 1.0 mean reward for all the gridworld sizes. In addition, from Fig. 2 (d), it can
be seen that DQN spends most of its time wandering around the same route. Thus, its search range
covers only a small proportion of the state space. Noisy-DQN explores a much broader area of the
state space. However, the bright colors in Fig. 2 (e) indicates that Noisy-DQN wastes significant
amount of time visiting explored states. On the other hand, Div-DQN is the only method that is
capable of exploring the gridworld uniformly and systematically, as illustrated in Fig. 2 (f). These
results validate that our methodology is superior in exploring large state spaces with sparse rewards.

Based on the above results, we conclude that the proposed diversity-driven exploration strategy does
offer advantages that are favorable in exploring large gridworlds with deceptive or sparse rewards.

4.3 Performance Comparison in Atari 2600

In addition to the gridworld environments, we evaluate our methodology in a more challenging set of
environments Atari 2600. We provide an in-depth analysis for the empirical results of a few games
selected from both the hard and easy exploration categories, according to the taxonomy in [24]. Each
agent is trained with 40M frames, and the performance is evaluated over three random seeds. In

1https://github.com/openai/baselines

6

Figure 3: Comparison of learning curves for different DQN variants in Atari 2600.

Figure 4: Comparison of learning curves for different A2C variants in Atari 2600.

Figs. 3 and 4, we plot the in-training median scores, along with the interquartile range. Div-DQN
(Linear) and Div-DQN (Dis) correspond to our diversity-driven DQN with the linear decay and the
distance-based methods for scaling α, respectively. Div-A2C (Pro) and Div-A2C (Rea) correspond to
our diversity-driven A2C with the proactive and the reactive methods in Sec. 3.3, respectively.

4.3.1 Hard Exploration Games

Fig. 3 plots the learning curves of all of the models in the training phase. It can be seen that our
methods demonstrate superior or comparable performance to the baseline methods in all games.
Particularly, we observe that our strategy helps an agent explore a wider area more efficiently
compared to the other baselines, which is especially useful when the state spaces become sufficiently
large. For example, in Freeway, we notice that our agents are able to quickly discover the only
reward at the other side of the road, while the other methods remain at the starting position. This
observation is consistent with the learning curves illustrated in Figs. 3 (a) and 4 (a), where Div-DQN
and Div-A2C learns considerably faster and better than the baseline methods. In addition to the direct
benefits of efficient and thorough exploration mentioned above, we also observe that the exploratory
behaviors induced by our methods are more systematic, motivating our agents explore unvisited
states. As shown in Fig. 3 (b), Div-DQN is the only one that learns a successful policy in Venture. On
the contrary, as the vanilla DQN, A2C, Noisy-DQN/A2C, and Curiosity-DQN/A2C agents explore in
a random way, they often bump into monsters they have previously seen and are quickly killed. It
should be noted that although Div-A2C does not demonstrate a substantial increase in performance,
it can be seen in Table S1 that it does end up with higher rewards than the baselines. We also observe
that our method helps an agent ignore known small (deceptive) rewards, and discover alternative ways
to obtain the optimal reward. For instance, in Alien, our agents learn to collect rewards while avoiding
aliens by detouring, while the baselines focus on the immediate rewards in front of them without
taking aliens into consideration. This enables our agents obtain higher average rewards than the
baselines. In summary, our methods bring an improvement in terms of scores and training efficiency
for hard exploration games except Montezuma’s Revenge, which is notorious for its complexity.

7

Figure 5: Comparison of learning curves for different DDPG variants in MuJoCo.

4.3.2 Easy Exploration Games

We show that the proposed diversity-driven exploration strategy can improve the training efficiency
for easy exploration games as well. From the learning curves of Enduro and BankHeist presented in
Figs. 3 and 4, it can be seen that our Div-DQN and Div-A2C agents learn significantly faster than the
baselines in both games. They also show superior performance to the baselines for most of the time.

4.4 Performance Comparison in MuJoCo Environments

To evaluate the proposed methods in continuous control domains, we conduct experiments in MuJoCo
environments with (1) deceptive rewards, (2) large state space, and (3) sparse rewards, and similarly
plot the in-training median scores in Fig. 5. In Fig. 5, DDPG (Div-Linear) and DDPG (Div-Dis)
represent Div-DDPG with linear decay and distance-based scaling, respectively. DDPG (OU Noise)
and DDPG (Param Noise) stand for vanilla DDPG and parameter noise DDPG, respectively. We
investigate and discuss how diversity-driven loss influences the agents’ behavior in these environments,
and demonstrate that our methodology does lead to superior exploration efficiency and performance.

4.4.1 Environments with Deceptive Rewards

Figs. 5 (a) and (b) plot the learning curves of Div-DDPG and vanilla DDPG in environments with
deceptive rewards. In both cases, it is observed that our agents learn considerably faster, and end up
with higher average rewards than the baselines. While vanilla DDPG often converges to suboptimal
policies, Div-DDPG is able to escape from local optimum and find better strategies for larger payoffs.
For example, in Humanoid, the baseline agent learns to lean forward for rewards, but at an angle that
makes it easily fall down. Although our agent initially behaves in a similar way, it later discovers
an alternate policy, and successfully walks forward for a much longer period without falling over.
Similarly, in HalfCheetah, Div-DDPG agent acts in the same way as the vanilla agent initially, but it
ultimately learns to balance itself and moves forward swiftly. These results indicate that our method
does help agents explore more states, increasing their chances to escape from suboptimal policies.

4.4.2 Environments with Large State Spaces

Figs. 5 (c), (d), and (e) plot the learning curves of Div-DDPG and DDPG in environments with
large state spaces. It can be seen that our methods learn significantly faster than baseline methods in
Pusher, Thrower, and Strike. In these environments, agents have to manipulate a robotic arm to push,
throw, or hit a ball to goal areas, respectively. Even though these environments provide well-defined
reward functions, it is still challenging for agents to learn feasible policies, as they have to explore
the enormous state spaces. We observe that the baseline methods move the arms aimlessly, and rarely
reach the goals. Moreover, the random perturbation in their behaviors makes it harder for them to
push/throw/hit the ball to the goal. In contrast, without the interference of action noise during training,
our methods can quickly learn to manipulate the arm correctly, and hence result in higher rewards.

4.4.3 Environments with Sparse Rewards

We redefine the reward functions of Reacher and HalfCheetah and create the SparseReacher and
SparseHalfCheetah environments to investigate the impact of sparse rewards on the performance
of Div-DDPG, parameter noise DDPG, and vanilla DDPG. In SparseReacher, a reward of +1 is
only granted when the distance between the actuator and the target is below a small threshold. In

8

SparseHalfCheetah, an agent is only rewarded with +1 when they move forward over a distance
threshold. In Fig. 5 (f), we report the performance of each method in SparseReacher. While all of the
methods are able to succeed in these environments, it can be noticed that Div-DDPG learns faster,
and achieves higher average rewards. In Fig. 5 (g), we show the performance of each methods in
SparseHalfCheetah with the distance threshold set to 15.0. It can be observed that Div-DDPG is the
only method that is able to acquire a stable policy for this setting. In contrast, vanilla DDPG and
parameter noise DDPG rarely exceed the distance threshold, and receive no reward most of the time.

From these results, we conclude that our methods equip agents with the ability to explore efficiently
in continuous control environment, and achieve promising results in various challenging settings.

5 Related Work
As our diversity-driven exploration strategy relates to several prior works in RL, this section provides
a comprehensive comparison with those researches in terms of objectives and implementations.

Entropy regularization for RL. This line of works attempts to alleviate the premature convergence
problem in policy search by regularizing the learning process with information-theoretic entropy
constraints. In [25], the authors address this problem by constraining the relative entropy between
old and new state-action distributions. Similarly, a few recent works [26, 27] propose to alleviate this
problem by bounding the KL-divergence between prior and current policies. In terms of objectives,
our method aims to improve the insufficient exploration problem in deceptive and sparse reward
settings, rather than addressing the premature convergence problem in policy learning. Regarding
implementations, both the above works and ours impose entropy-related constraints during learning.
However, our method encourages exploration by maximizing the distance measure between the
current and prior policies, instead of restraining their state-action distribution or KL-divergence.

Maximum entropy principle for RL. This series of works aim to improve the performance of
exploration under uncertain dynamics by optimizing a maximum entropy objective. In [28, 29], the
authors construct this objective function by augmenting the reward function with policy entropy of
visited states. Maximizing the expected entropy and rewards jointly encourages an RL agent to act
optimally while retaining the stochasticity of its policy. This stochasticity in policy enhances the
performance of exploration under uncertain dynamics. In respect of objectives, the works in [28, 29]
and our approach all intend to ameliorate the performance and efficiency of exploration. However,
our work focuses more on environments with deceptive and sparse rewards, rather than those with
uncertain dynamics. In terms of implementations, our method maximizes the distance measure
between old and new policies, instead of maximizing the expected entropy of an agent’s policy.

To conclude, our method differs from the previous works in several fundamental aspects. It enhances
the efficiency of exploration with a novel loss term. To our best knowledge, our work is the first one
to encourage exploration by maximizing the distance measure between current and prior policies.

6 Conclusion
In this paper, we presented a diversity-driven exploration strategy, which can be effectively combined
with current RL algorithms. We proposed to promote exploration by encouraging an agent to engage
in different behaviors from its previous ones, and showed that this can be easily achieved through
the use of an additional distance measure term to the loss function. We performed experiments in
various benchmark environments and demonstrated that our method leads to superior performance
in most of the settings. Moreover, we verified that the proposed approach can deal with sparsity
and deceptiveness in the reward function, and explore in large state spaces efficiently. Finally, we
analyzed the adaptive scaling methods, and validated that the methods do improve the performance.

Acknowledgment
The authors would like to thank Ministry of Science and Technology (MOST) in Taiwan and MediaTek
Inc. for their funding support, and NVIDIA Corporation and NVAITC for their support of GPUs.

9

References
[1] V. et al. Mnih. Human-level control through deep reinforcement learning. Nature, vol. 518, no.

7540, pp. 529-533, February 2015.

[2] D. et al. Silver. Mastering the game of Go with deep neural networks and tree search. Nature,
vol. 529, no. 7587, pp. 484-489, January 2016.

[3] M. et al. Zhang. Learning deep neural network policies with continuous memory states. In
Proc. Int. Conf. Robotics and Automation (ICRA), pages 520–527, May 2016.

[4] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In Proc.
Int. Conf. Intelligent Robots and Systems (IROS), pages 5026–5033, December 2012.

[5] M. et al. Plappert. Parameter space noise for exploration. In Proc. Int. Conf. Learning
Representations (ICLR), May 2018.

[6] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT Press, 1998.

[7] V. et al. Mnih. Asynchronous methods for deep reinforcement learning. In Proc. Int. Conf.
Machine Learning (ICML), pages 1928–1937, June 2016.

[8] M. et al. Fortunato. Noisy networks for exploration. In Proc. Int. Conf. Learning Representations
(ICLR), May 2018.

[9] I. Osband, D. Russo, Z. Wen, and B. Van Roy. Deep exploration via randomized value functions.
arXiv:1703.07608, March 2017.

[10] R. et al. Houthooft. Vime: Variational information maximizing exploration. In Advances in
Neural Information Processing Systems (NIPS), pages 1109–1117, December 2016.

[11] H. et al. Tang. #Exploration: A study of count-based exploration for deep reinforcement
learning. In Advances in Neural Information Processing Systems (NIPS), pages 2750–2759,
December 2017.

[12] A. et al. van den Oord. Conditional image generation with pixelcnn decoders. In Advances in
Neural Information Processing Systems (NIPS), pages 4790–4798, December 2016.

[13] B. C. Stadie, S. Levine, and P. Abbeel. Incentivizing exploration in reinforcement learning with
deep predictive models. arXiv:1507.00814, November 2015.

[14] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In Proc. Int. Conf. Machine Learning (ICML), pages 2778–2787, August
2017.

[15] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via bootstrapped DQN.
In Advances in Neural Information Processing Systems (NIPS), pages 4026–4034, December
2016.

[16] J. Lehman and K. O. Stanley. Abandoning objectives: Evolution through the search for novelty
alone. Evolutionary computation, 19(2):189–223, May 2011.

[17] J. Lehman and K. O. Stanley. Evolving a diversity of virtual creatures through novelty search
and local competition. In Proc. Conf. Genetic and Evolutionary Computation, pages 211–218,
July 2011.

[18] J. Lehman and K. O. Stanley. Novelty search and the problem with objectives. Genetic
Programming Theory and Practice IX, pages 37–56, October 2011.

[19] E. et al. Conti. Improving exploration in evolution strategies for deep reinforcement learning
via a population of novelty-seeking agents. arXiv:1712.06560, December 2017.

[20] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research (JAIR), 47:
253–279, May 2013.

10

[21] T. P. et al. Lillicrap. Continuous control with deep reinforcement learning. arXiv:1509.02971,
February 2016.

[22] D. et al. Silver. Deterministic policy gradient algorithms. In Proc. Int. Conf. Machine Learning
(ICML), pages 387–395, June 2014.

[23] Y. et al. Wu. Scalable trust-region method for deep reinforcement learning using Kronecker-
factored approximation. In Advances in Neural Information Processing Systems (NIPS), pages
5285–5294, December 2017.

[24] M. et al. Bellemare. Unifying count-based exploration and intrinsic motivation. In Advances in
Neural Information Processing Systems (NIPS), pages 1471–1479, December 2016.

[25] Jan Peters, Katharina Mülling, and Yasemin Altun. Relative entropy policy search. In As-
sociation for the Advancement of Artificial Intelligence (AAAI), pages 1607–1612. Atlanta,
2010.

[26] J. et al. Schulman. Trust region policy optimization. In Proc. Int. Conf. Machine Learning
(ICML), pages 1889–1897, July 2015.

[27] J. et al. Schulman. Proximal policy optimization algorithms. arXiv:1707.06347, August 2017.

[28] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. arXiv:1801.01290, January 2018.

[29] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learn-
ing, volume 80 of Proc. of Machine Learning Research, pages 1861–1870, Stockholmsmässan,
Stockholm Sweden, 10–15 Jul 2018. PMLR.

11

