
Semi-Supervised Policy Initialization for
Playing Games with Language Hints

Tsu-Jui Fu and William Yang Wang
UC Santa Barbara

{tsu-juifu, william}@cs.ucsb.edu

Abstract
Using natural language as a hint can supply
an additional reward for playing sparse-reward
games. Achieving a goal should involve sev-
eral different hints, while the given hints are
usually incomplete. Those unmentioned latent
hints still rely on the sparse reward signal, and
make the learning process difficult. In this pa-
per, we propose semi-supervised initialization
(SSI) that allows the agent to learn from var-
ious possible hints before training under dif-
ferent tasks. Experiments show that SSI not
only helps to learn faster (1.2x) but also has
a higher success rate (11% relative improve-
ment) of the final policy.

1 Introduction
Most Reinforcement Learning (RL) methods (Mnih
et al., 2013, 2016) rely on an agent to explore and
maximize the feedback reward. Since designing
a reward for each step is impractical, a common
setting is only to give out the achieved signal. In
Atari Grand Challenge (Kurin et al., 2017), only
if achieving the goal, the environmental reward is
1. However, this sparse-reward setting makes the
agent difficult to learn (Vecerik et al., 2017).

ExtLang (Goyal et al., 2019) incorporates lan-
guage hints as an additional reward to overcome the
sparse-reward issue. They first build 45 different
tasks under Montezuma’s Revenge game, where
each task consists of a starting state, an unknown
goal position, and a given hint. They also col-
lect demo clips, which are partial playing records
(states and actions) that each corresponds to a hint,
as shown in Fig. 1. To provide an additional reward,
ExtLang pre-trains a reward module to reflect the
relevance between agent actions and the given hint
when exploring a task. In this way, they can supply
a hint reward instead of only the sparse environ-
mental reward to make the agent easier to explore.

Though providing an additional reward, the hints
are usually incomplete (Kuhlmann et al., 2004).
Considering a task in Fig. 1, to achieve the goal,

Figure 1: For a task with hint “jump over the skull",
both “climb up the ladder" and “jump to get the key"
are useful latent hints and can be learned during SSI.

the agent should “jump over the skull," “climb up
the ladder," and “jump to get the key." However, the
given hint only contains the first one, and learning
those latent hints still relies on the sparse environ-
mental reward. To deal with this issue, we propose
semi-supervised initialization (SSI) that enables
the agent to experience various possible hints in
advance. We adopt a hint module to generate pos-
sible hints for random states and allow the agent
to learn from them. With SSI, agents can have a
better-initialized policy for further task training.

From another point of view, in this paper, we pro-
pose a semi-supervised initialization method and
investigate the abilities of NLP on controlling com-
plex actions in game environments (Narasimhan
et al., 2015; Ammanabrolu and Riedl, 2019). We
perform SSI first and train-evaluate on those tasks
built from ExtLang. Experimental results show that
with SSI, better-initialized policy not only learns
faster but also has a higher success rate.

2 Approach
2.1 Architecture
Fig. 2 illustrates our semi-supervised initialization
(SSI). First, the hint module H generates possi-
ble hints l for random states s. With s, the policy
module P rollouts and step actions a. Then, the
reward moduleR updates P based on the relevance



Figure 2: Overview of our semi-supervised initializa-
tion (SSI). Random states, along with the hints gener-
ated from the hint module, update the policy module by
the reward module, and get a better-initialized policy.

between a and l. With different s, P has the op-
portunity to learn from various possible hints, and
finally serves as a better-initialized policy.

Hint Module (H) H generates a possible hint l
for a state s. H adopts CNN to extract the visual
feature v of s and attention-based (Bahdanau et al.,
2015) GRU (Chung et al., 2014) as the decoder to
produce a series of words w as a hint l:

v = CNN(s), ht = GRU(wt−1, ht−1),

wt ∼ FC([ht,
∑

softmax(htWvT )v]),

l = {w1, w2, ..., wL},

(1)

where W is a learnable attention matrix.
Each example in demo clips D consists of a hint

l and a playing record {(s1, a1), (s2, a2), ...}. We
randomly select s and pre-train H with (s, l) pair.

Policy Module (P ) The policy module P is a re-
current action selector which steps at for a state st
at time step t. P applies CNN (Krizhevsky et al.,
2012) to extract the visual feature vt of st, GRU
to model previous history of s as h, and fully con-
nected layer (FC) to decide which action to step.
By rollout, we get a1:T :

vt = CNN(st), ht = GRU(vt, ht − 1),

at ∼ FC(ht).
(2)

Reward Module (R) R is a binary classifier1

which reflects the relevance between l and a, as
Fig. 3. Similar to ExtLang (Goyal et al., 2019),
we first transform the actions a1:T into action fre-
quency vector f where each value is the ratio of
that action in a1:T . R utilizes LSTM (Hochreiter

1Though more input (e.g., state frames) may make R more
robust, to compare with ExtLang fairly, we use the same
setting (the action frequency vector f ) as the input.

Figure 3: Reward module is a binary classifier which
reflects the relevance between the hint and actions.

and Schmidhuber, 1997) to encode l as el and FC
to extract ef for f . Then, another FC serves as the
binary classifier according to el and ef :

f = Frequency(a1:T ),

el = LSTM(l), ef = FC(f),

r = FC([el, ef ]),

(3)

where r is the output of the binary classification
and represents the relevance between l and a.

2.2 Semi-Supervised Initialization (SSI)
For a random state s, we adoptH to generate a pos-
sible hint l. With starting state s, the agent rollouts
and steps actions a1:T by P . Then, R provides the
hint reward rlt for time step t as following:

rlt = γ ·R(l, a1:t)−R(l, a1:t−1), (4)

where γ is a discount factor. This hint reward moti-
vates P to step relevant actions with l.

To update P , we adopt widely used Proximal
Policy Optimization (PPO) (Schulman et al., 2017)
to maximize rl during SSI. In this way, the agent
learns from various possible hints under different
states in advance and has better-initialization for
following task-training.

2.3 Task-Training
A task consists of a starting state s, an unknown
goal position g, and a given hint l. The agent ex-
plores in the environment, starting from s and re-
ceives the environmental reward rE . When achiev-
ing g, rE is 1; otherwise, it is 0 for all other steps.

With better-initialization, we further train P for
each task. Similar to our SSI, during task-training,
we also have rl to reflect how relevant of a from
P and the given l for this task. Therefore, during
task-training, there are 2 kinds of reward, the sparse
environmental reward rE and the hint reward rl.:

at = P (st),

st+1, rEt = Env(at),

rlt = γ ·R(l, a1:t)−R(l, a1:t−1).

(5)

Finally, we optimize P by maximizing rE+rl for
this task also using PPO.



Algorithm 1 Learning of SSI and Task-Training
1: Env: the environment
2: P : policy module, R: reward module, H: hint module
3:
4: while DO_SSI do
5: s← Env . random starting state
6: l←H(s) . generate a hint by H
7: a1:T ← P (s) . rollout s by P
8: rlt ← hint reward . Eq. 4
9: Update P by maximizing rl using PPO

10: end while
11:
12: while DO_Task-Training do
13: s, l← Task . starting state and hint of the task
14: a1:T ← P (s) . rollout s by P
15: rlt ← hint reward . Eq. 5
16: rEt ← environmental reward . Eq. 5
17: Update P by maximizing (rl + rE) using PPO
18: end while

Learning Process of SSI and Task-Training
Alg. 1 describes the learning process of our SSI
and task-training. During SSI, P updates to step
relevant actions to the generated l from H . Thus,
P can consider different hints in advance. During
task-training, with better-initialization, P is opti-
mized by both the environmental reward rE and
the hint reward rl to achieve the final goal.

3 Experiments
Experimental Settings To fairly compare with
the baseline ExtLang (Goyal et al., 2019), we con-
duct the experiments on the same 45 tasks they
build under Montezuma’s Revenge environment.
H is pre-trained by the same demo clips D. We
collect the same 160,000 (f , l) pairs as ExtLang to
pre-train R. Then, H and R are fixed during SSI
and task-training. A task consists of a starting state
and a hint, and the agent explores the environment
to achieve the unknown goal.

We apply 3-layer CNN to extract the visual fea-
ture of a state. Both LSTM and GRU contain 128
hidden units. We utilize PPO to optimize during
SSI and task-training with learning rate 7e-4.

As a baseline, ExtLang consists of the same P
and R to provide an additional hint reward during
task-training. However, without H and SSI, Ext-
Lang explores with a random-initialized policy. We
compare ExtLang with our ExtLang-SSI (ExtLang
with semi-supervised initialization). All results are
averaged from 45 tasks and 5 times experiments.

Quantitative Results Fig. 4 demonstrates the
learning curve of ExtLang and our ExtLang-SSI.
The x-axis is the training steps of PPO. The upper
figure is about the success rate, and the downer one

Figure 4: Comparison between learning curves of Ext-
Lang and our ExtLang-SSI.

is for accumulated successful episodes2.
The results show that under the same training

step, ExtLang-SSI can succeed in more episodes
than ExtLang. With SSI to learn from possible la-
tent hints in advance, ExtLang-SSI can learn faster
than a random-initialized policy. In detail, ExtLang-
SSI succeeds 2720 episodes using only 420K train-
ing steps where ExtLang requires a total 500K.
With better-initialized policy, ExtLang-SSI brings
out 1.2x speedup during task-training and success
higher 3465.6 episodes in total.

A similar tendency can be found for the success
rate. ExtLang-SSI has a higher success rate than
ExtLang under the same training step. Apart from
the learning curve, we also evaluate the final pol-
icy for both ExtLang and ExtLang-SSI. The final
success rate is shown in the chart where ExtLang-
SSI has a higher 26.95% and outperforms ExtLang
with 11% relative improvement. With a better ini-
tialization, ExtLang-SSI can lead to a better final
policy. The results of both accumulated successful
episodes and success rates show that our proposed
SSI not only accelerates the learning process but
also helps to achieve a higher final success rates.

An interesting insight is that during the early
training (before 100K training steps), ExtLang is
slightly better than our ExtLang-SSI. Because of
learning from various hints in advance, ExtLang-
SSI explores the environment based on different
latent hints at first. Then, ExtLang-SSI can train
faster with experiencing those useful latent hints
for this task, and finally, achieve more successful
episodes and higher success rate.

2Since it is an “accumulated" number, it will keep increas-
ing with more training steps. Note that the training for Ext-
Lang and ExtLang-SSI are both converged.



Figure 5: The learning curve for task 5 and 7.

Figure 6: Comparison between learning curves of
ExtLang-SSI under different iterations during SSI.

Fig, 5 presents the learning curve about the suc-
cess rate for Task 5 and 73. For task 5, ExtLang
has about 35% success rate at the end, but our
ExtLang-SSI outperforms 35% when the very early
of training, which means SSI helps to learn faster.
Task 7 is more difficult that ExtLang almost fails
even with the hint reward. While, with learning
from various latent hints, ExtLang-SSI can finally
achieve a 40% success rate.

Analysis of SSI To investigate our proposed SSI,
We analyze the detailed effectiveness of ExtLang-
SSI. Fig. 6 illustrates the learning curves under
different iterations during SSI. Similar to Fig. 4,
the x-axis is the training step of task-training, and
each line is for each iteration number during SSI
(250K-500K). We can see that when using 350K
iterations to perform SSI, ExtLang-SSI can succeed
more than 3000 episodes in 500K training steps.
In general, more iterations during SSI enables the
agent to access more latent hints with different

3Task 5 requires the agent to get down and jump over a
spider; task 7 needs the agent to turn left, jump, and get a key.

Figure 7: The relative improvement of ExtLang-SSI’s
final policy under different iterations during SSI.

Noise Rate 0% 10% 30% 50%

Suc. Rate 26.95% 26.38% 24.52% 23.91%

Table 1: The success rate under different noise rates of
SSI hints (baseline: 24.01%).

starting states and helps the agent to learn faster.
Besides, SSI also benefits the policy by providing
better initialization. Thus, more SSI also makes a
higher success rate under task-training.

We also evaluate the final policy. Fig. 7 shows
the relative improvement of ExtLang-SSI’s final
policy under different iterations during SSI. Note
that the x-axis in Fig. 7 represents the number of
iterations during SSI. ExtLang-SSI has a 6.0% rel-
ative improvement when applying SSI for 250K
iterations. Similar to the learning curves, more SSI
brings out a more massive relative improvement
and achieve 11% under 500K SSI iterations.

Analysis of Generated Hints We randomly se-
lect 100 generated hints and ask people to check
if they are relevant to the state. The result shows
that 73 are totally corresponding, 21 are relatively
corresponding, and only 6 are not corresponding.
Our H can actually generate an appropriate hint
for a given state so that SSI can help P for better
initialization.

We make the noise hints during SSI by randomly
pairing a state with any other generated hint. The
success rate under different noise rates is shown
in Table 1. We can see that a high noise rate will
make SSI not that robust. Moreover, if the hints are
too noisy, it will even hurt the performance (24.01
down to 23.91). While, we have verified that ourH
can provide accurate hints. Therefore, SSI benefits
the initialization, leading to a better success rate.

Qualitative Results Fig. 8 demonstrates some
examples of hint l generated by our H . By up-
dating with hints like “climb down the ladder” or
“wait at the bridge appears” , P can learn those la-
tent but useful hints before task-training in a semi-
supervised scenario.



Figure 8: Examples of hint l generated by H .

4 Conclusion and Ethical Considerations
In this paper, we propose semi-supervised initial-
ization that makes the agent learn from various
possible hints in advance before play games with
language hint. By semi-supervised initialization,
the agent can have a better-initialization policy,
which benefits further task-training. The experi-
ments show that semi-supervised initialization not
only helps the agent to learn faster but also has a
higher success rate of the final policy. Our pre-
sented SSI can benefit future vision-and-language
research for practical applications. In terms of
negative impact, since the initialization is learned
from those instructions, if there is bias in the
original dataset, it may have some potential issues.

Acknowledgments. Research was sponsored
by the U.S. Army Research Office and was
accomplished under Contract Number W911NF-
19-D-0001 for the Institute for Collaborative
Biotechnologies. The views and conclusions
contained in this document are those of the authors
and should not be interpreted as representing the
official policies, either expressed or implied, of
the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints
for Government purposes notwithstanding any
copyright notation herein.

References
Prithviraj Ammanabrolu and Mark O. Riedl. 2019.

Playing Text-Adventure Games with Graph-Based
Deep Reinforcement Learning. In NAACL.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In ICLR.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical Evaluation
of Gated Recurrent Neural Networks on Sequence
Modeling. In NIPS Workshop.

Prasoon Goyal, Scott Niekum, and Raymond J.
Mooney. 2019. Using Natural Language for Reward
Shaping in Reinforcement Learning. In IJCAI.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
Short-term Memory. In Neural Computation.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2012. ImageNet Classification with Deep Con-
volutional Neural Networks. In NIPS.

Gregory Kuhlmann, Peter Stone, Raymond Mooney,
and Jude Shavlik. 2004. Guiding a Reinforcement
Learner with Natural Language Advice: Initial Re-
sults in RoboCup Soccer. In AAAI Workshop.

Vitaly Kurin, Sebastian Nowozin, Katja Hofmann, Lu-
cas Beyer, and Bastian Leibe. 2017. The Atari
Grand Challenge Dataset. In arXiv:1705.10998.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi
Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. 2016.
Asynchronous Methods for Deep Reinforcement
Learning. In ICML.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. In NIPS Workshop.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzi-
lay. 2015. Language Understanding for Text-based
Games using Deep Reinforcement Learning. In
EMNLP.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal Policy
Optimization Algorithms. In arXiv:1707.06347.

Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin
Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess,
Thomas Rothörl, Thomas Lampe, and Martin Ried-
miller. 2017. Leveraging Demonstrations for Deep
Reinforcement Learning on Robotics Problems with
Sparse Rewards. In arXiv:1707.08817.


