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Figure 1. We introduce UniVG, a single generalist model that can support diverse image generation tasks, including text-to-image, inpaint-
ing, identity-preserving generation, layout-guided generation, instruction-based editing, depth estimation, and referring segmentation.

Abstract

Text-to-Image (T2I) diffusion models have shown impres-
sive results in generating visually compelling images fol-
lowing user prompts. Building on this, various methods fur-
ther fine-tune the pre-trained T2I model for specific tasks.
However, this requires separate model architectures, train-
ing designs, and multiple parameter sets to handle differ-
ent tasks. In this paper, we introduce UniVG, a general-
ist diffusion model capable of supporting a diverse range
of image generation tasks with a single set of weights.
UniVG treats multi-modal inputs as unified conditions to
enable various downstream applications, ranging from T2I
generation, inpainting, instruction-based editing, identity-
preserving generation, and layout-guided generation, to

depth estimation and referring segmentation. Through com-
prehensive empirical studies on data mixing and multi-task
training, we provide detailed insights into the training pro-
cesses and decisions that inform our final designs. For ex-
ample, we show that T2I generation and other tasks, such as
instruction-based editing, can coexist without performance
trade-offs, while auxiliary tasks like depth estimation and
referring segmentation enhance image editing. Notably, our
model can even outperform some task-specific models on
their respective benchmarks, marking a significant step to-
wards a unified image generation model.
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1. Introduction
Diffusion models, particularly those developed for text-to-
image generation, have made significant strides. Models
such as Stable Diffusion [10, 43, 47], DALL-E [45], and Im-
agen [16] have shown the capability to generate high qual-
ity, photorealistic images from text prompts. Meanwhile,
various efforts have extended diffusion models to special-
ized tasks, leading to models such as InstructPix2Pix [4],
ControlNet [69], and InstandID [56]. However, the grow-
ing number of task-specific models has led to challenges
in managing these systems efficiently and optimizing com-
putational resources. A more scalable solution is a single,
unified model capable of handling diverse image generation
tasks, simplifying both development and deployment. This
motivation has driven a growing interest in developing gen-
eralist diffusion models in the community [28, 60].

In this paper, we present UniVG, a diffusion based model
that unifies diverse image generation tasks within a single
framework. Built on a minimally modified MM-DiT [10]
architecture, UniVG seamlessly integrates diverse types of
inputs, including text prompts, masks, and existing images,
and is able to adapt to different tasks by adjusting its in-
puts. Furthermore, external conditions (e.g., semantic maps
or user-defined attributes) can be injected through embed-
ding replacement to have further control.

The concept of generalist diffusion models is not new,
and has been explored in pioneering works such as Omni-
Gen [60] and OneDiffusion [28]. While these studies have
demonstrated the feasibility of the approach and outlined
high-level training procedures, the finer details of their ex-
ecution remain unclear. Notably, both works lack clear ab-
lation studies on optimal design choices for model training.
To advance research in this area, we share our insights on
building such models and focus on refining the best prac-
tices for developing a generalist diffusion model. Our in-
vestigation centers on three key aspects: (i) modeling, (ii)
data recipe, and (iii) training strategy.

First, for modeling, we adopt a minimalist design, where
the latent features of an input image are concatenated with
the latent noise and the guided mask along the channel di-
mension, rather than the sequence dimension as in Omni-
Gen [60]. This minimalist design greatly improves training
and inference efficiency compared to OmniGen [60], e.g.,
for instruction-based image editing (evidenced later in Sec-
tion 4.3), allowing us to readily run large-scale experiments
to investigate data recipe and training strategies.

Second, for data recipe, we curate a large-scale dataset
encompassing diverse image generation tasks, ranging from
text-to-image generation, inpainting, instruction-based edit-
ing, identity-preserving generation, layout-guided genera-
tion, to depth estimation and referring segmentation. Fur-
thermore, we carefully examine the synergy between these
tasks, an aspect unexplored in OmniGen [60] and OneD-

iffusion [28]. For example, we find that instruction-based
image editing does not compromise core text-to-image gen-
eration performance, while auxiliary tasks such as depth es-
timation and referring segmentation naturally enhance the
performance of image editing.

Third, for training strategy, instead of training on all
data simultaneously, we adopt a progressive training ap-
proach. We first pretrain the model on large-scale text-to-
image data, then gradually introduce instruction-based im-
age editing and other image generation tasks. In the final
stage, we mix in additional ID-preserving generation data
to further fine-tune the model for this specific capability.

As illustrated in Fig. 1, by integrating all the insights pre-
sented in the paper, UniVG achieves strong performance
across all image generation tasks considered, demonstrat-
ing the advantages of a generalist model. Particularly, our
UniVG achieves a GenEval [15] score of 0.70, outperform-
ing FLUX.1-dev [26] (with score 0.66), which is optimized
solely for text-to-image generation.

Our main contributions are summarized as follow. (i)
We introduce UniVG, a generalist diffusion model capable
of handling a wide range of image generation tasks without
compromising core text-to-image generation performance.
(ii) We present an in-depth study of data curation and train-
ing strategies, offering valuable insights for developing a
unified image generation model. (iii) We achieve state-of-
the-art performance compared to our two closest competi-
tors, OmniGen [60] and OneDiffusion [28].

2. Related Work
Latent Diffusion Models for Image Generation. Signifi-
cant progress has been made in using diffusion models for
image generation [8, 23, 52], making them the mainstream
approach for text-to-image (T2I) tasks [16, 40]. Building
on latent-space image diffusion models such as Stable Dif-
fusion [43, 47], recent work has increasingly adopted flow-
based formulations [34, 37, 55] and transformer-based ar-
chitectures [3, 5, 19, 42]. The flow-based approach sim-
plifies the image generation process, providing a more di-
rect generation path that improves both model convergence
speed and generation quality [10]. In comparison with ear-
lier U-Net architecture [23, 48], transformer-based models
such as DiT [42] have a simpler design with fewer layer
types and are more compatible with scale, benefiting from
advancements in large language models. Both SD3 [10]
and Flux.1 [26] integrate these advancements, establishing
themselves as state-of-the-art open-source models.

Apart from improving the T2I performance, researchers
have also explored using diffusion models for various other
image generation applications, such as (i) fine-grained con-
trol [30, 39, 64, 69], (ii) instruction-based editing [4, 11,
29, 68], (iii) personalized generation through conditioning
on reference images [17, 31, 56, 65], to name a few.



Figure 2. An overview of our UniVG. UniVG contains a text encoder to extract prompt embeddings from the input text and an MM-DiT to
perform cross-modal fusion for latent diffusion, where all visual guidance (latent noise, input image, and input mask) are concatenated along
the channel dimension as a fix-length sequence for high efficiency. Additionally, an external condition can be injected through embedding
replacement to have further control. Hence, a generalist UniVG can support diverse tasks, such as text-to-image, in/outpainting, instruction-
based editing, layout-guided generation, and ID-preserving generation. We also consider auxiliary tasks, including depth estimation, pose
estimation, and referring segmentation, to enhance its visual scene perception.

Unified Diffusion Models. Many works [44, 62, 71] have
explored how to leverage diffusion models across different
types of controls. However, these approaches are typically
constrained to multiple image conditions and often require
the design of complex adapters for each specific condition.
Some other works [35, 36, 54, 63], such as TransFusion [73]
and Show-o [61], attempt to unify image understanding and
generation. More recently, OmniGen [60] and OneDiff [28]
have introduced generalist diffusion models capable of han-
dling a broad range of image generation tasks. In compar-
ison, our approach offers a more thoroughly studied recipe
for training such generalist models.

3. Method

3.1. Background

Multi-modal Diffusion Transformer (MM-DiT). Differ-
ent from the original cross-attention [43, 47] via U-Net [48],
MM-DiT leverages structured attention of DiT [42] to fuse
features from multiple modalities and then perform the de-
noising process of a diffusion model [23, 51]. Specifically,
it concatenates all input as the single sequence and captures
intricate cross-modal modeling to enhance both fidelity and
controllability for multi-modal generation.

Flow Matching. Classic denoising diffusion models, such

as DDPM [23] and DDIM [51], have shown promising abil-
ity in modeling complex data distribution (e.g., image gen-
eration). Instead of gradually adding Gaussian noises, flow
matching [1, 33, 34] learns the continuous-time transforma-
tion. Specifically, a time-dependent vector field ut handles
this transportation between noise and data, which is govern
by ODE [6] over u from time 0 to time t. As u is generally
intractable [33], conditional flow matching (CFM) [10, 33]
can learn a model F to imitate the ideal transformation:

LCFM = E ||F(xt, t | z)− ut(x)||2, (1)

where xt is the example x at time t, and z is the condition.
Hence, the ODE solver does not require numerous discrete
time steps [23] and can adapt to the most efficient trajectory,
leading to a more efficient sampling with fewer steps.

3.2. UniVG

Fig. 2 illustrates the overview architecture of UniVG, which
contains the text encoder to extract prompt embeddings {p}
for the input prompt X and MM-DiT F for diffusion model-
ing. Following latent diffusion learning [47], we apply Vari-
ational Autoencoder (VAE) for the input image V , and the
binary input mask M is resized accordingly. During train-
ing, the linear interpolation schedule [10] is applied over the



output image O with Gaussian noise ϵ ∼ N (0, 1):

z = VAEEnc(O),

zt = t · z + (1− t) · ϵ,
(2)

where the target velocity field u(z) = z−ϵ. We concatenate
the latent noise zt with the visual inputs along the channel
dimension into an equal-length sequence, which is the key
to achieving high efficiency even considering multiple guid-
ance and mitigating the context perception disruption [38].
We unite the prompt embeddings and optimize F from the
flow-matching loss:

d = [zt ⊕ VAEEnc(V)⊕ Resize(M)],

L = E
[
||F([{p}, t, d]])− ut||2

]
.

(3)

To add additional condition C for further control, we can
utilize external encoder H that extracts domain-specific fea-
tures f = H(C), which should have the same hidden dimen-
sion size to F . We then inject this external condition by re-
placing the prompt embeddings of pre-designed placeholder
tokens. For example, the facial features f will substitute for
“<p>” as our new prompt embeddings. By Eq. 3, MM-DiT
can consider all guidance from prompt X , input image V ,
input mask M, and external condition C for diverse control.
Note that C is not limited to an image. Any format of guid-
ance can be conditioned via its encoder. The length of f is
also flexible as long as having multiple placeholder tokens.
Inference. We follow classifier-free guidance (CFG) [4, 22]
during our UniVG inference:

F =⇒ F(∅, t, {zt,∅,∅})
+ αV · (F(∅, t, {zt, v,m)−F(∅, t, {zt,∅,∅}))
+ αX · (F({p}, t, {zt, v,m)−F(∅, t, {zt, v,m})),

where v is the latent features of V , m is the resized input
mask of M, and (αV , αX ) is the guidance scale. After de-
noising back to ẑ0, we utilize VAEDec to get the actual image
generation result.

3.3. Multi-task Training
To support various image generation applications, we con-
sider diverse tasks and formulate each input format as fol-
lows for UniVG multi-task training and inference (Fig. 2).
Text-to-Image & In/Outpainting. We prepend a special
task token <t2i> for text-to-image, where the input image
V is an empty (black) image, and the input mask M is all
True (white), which means that we have to fill all regions
in this generation. For in/outpainting, we reuse <t2i>, but
V is an image with a black block, and M has a correspond-
ing white block, which controls the model to paint the as-
signed region. During training, we randomly sample a re-
gion to mask out an image and treat its caption as the guided

Task Ratio Task Ratio

Text-to-Image 28% Instruction-based Editing 47%
Inpainting 10% Auxiliary Tasks 3%
Outpainting 10% Layout-guided Generation 2%

Table 1. The used mixture for UniVG multi-task training.

prompt [43]. The complete image is the ideal output image
O. We further consider background in/outpainting, where
the prompt is discarded as an empty string in this case.
Instruction-based Editing. For instruction-based editing,
V and O are the input and edited image, respectively. The
prompt is the instruction with <ie> in front, with a blank
M as all regions are editable.
Auxiliary Tasks. To enhance the visual scene understand-
ing of UniVG, we integrate depth estimation, pose estima-
tion, and referring segmentation as our used auxiliary tasks.
Rather than structured outputs, we follow OneDiff [28] and
directly treat the visualization result of each task as O to
learn via image generation. We utilize <depth> for depth
estimation, <pose> for pose estimation, and <seg> for re-
ferring segmentation (with target:color in the prompt),
where V is the input image, and M are all True.
Layout-guided Generation. Regarding more fine-grained
control, layout-guided generation requires the model to gen-
erate objects in assigned regions, where a given layout con-
tains each bounding box of them. We visualize the layout as
V and inject the object information into the prompt, such as
“<lg> ... girl in blue block. soccer ball in the green block.”
In this way, UniVG can have sufficient spatial guidance for
layout-guided generation with an all-True M. This high-
lights that, in our design, the input image is not necessarily
limited to being visually similar to the output.
ID-preserving Generation. We adopt the CLIP image en-
coder to extract facial embedding f for an input face C. We
then replace its prompt embeddings p of the placeholder to-
ken <p> and feed into MM-DiT. Therefore, UniVG follows
both input face and caption to perform ID customization. In
detail, we apply the last layer of CLIP, followed by a two-
layer MLP, as our used external encoder.
Training Recipe. We present the used multi-stage training
recipe of UniVG based on our empirical observations:
• Stage I (foundation training): We train MM-DiT from

scratch on text-to-image with lr=1e-4 and batch size=512
for 400K steps;

• Stage II (multi-task training): We have in/outpainting,
instruction-based editing, auxiliary tasks, layout-guided
generation along with text-to-image for multi-task train-
ing. The detailed mixture is shown in Sec. 4.1, where we
also adopt lr=1e-4 and batch size=512 for 400K steps;

• Stage III (further finetuning): After finding the catas-
trophic forgetting issue if involving ID-preserving gener-
ation at Stage II, we instead train this ID-customization



Method #Param GenEval↑ CompBench↑ DSG↑ HPSv2↑

SDXL 2.6B 0.55 0.42 0.72 27.7
FLUX.1 12.0B 0.66 0.47 0.73 29.2
SD3 8.0B 0.71 0.49 0.76 28.9

OneDiff 2.8B 0.65 0.44 0.68 27.5
OmniGen 3.8B 0.70 0.46 0.66 27.7
UniVG 3.7B 0.70 0.48 0.75 28.2

Table 2. Results of text-to-image generation on GenEval [15], T2I-
CompBench [24], DSG [7], and HPSv2 [59].

task with all other multi-task data in a 1:1 ratio afterward.
The used external image encoder is also trained with MM-
DiT for lr=2e-5, batch size=512, and 40K steps.

We conduct a comprehensive ablation study in Sec. 4.3.

4. Experiments
4.1. Experimental Setup
Datasets. We construct a dataset collection to build a gen-
eralist model that supports diverse tasks. For text-to-image,
we have internal 2B text-image pairs, JourneyDB-4M [53],
and DALLE3-1M [9]. We consider two scenarios of image
in/outpainting: text-guided and background. We utilize our
text-image pairs for text-guided in/outpainting; we involve
our internal 5M scene images, OSV-5M [2], and Places365-
1M [72] for background in/outpainting.

We incorporate open-source datasets, including IPr2Pr-
1M [4], UltraEdit-4M [70], SeedEdit-3M [13], OmniEdit-
1M [57], and StyleBooth-11K [18] for our instruction-based
editing. All of them contain triplets of (input image, instruc-
tion, output image). Most of the image pairs are synthesized
from Prompt-to-Prompt [20] or inpainting. In our auxiliary
tasks, we consider COCO-118K [32], KITTI-7K [14], and
Hypersim-75K [46] for depth estimation, COCO-27K [32]
for pose estimation, and COCO-213K [32], RefCOCO [67],
and PhraseCut-298K [58] for referring segmentation.

To support more guidance, we include Flickr-148K [66]
and SBU-840K [41] for layout-guided generation and fol-
low the pre-processing in GLIGEN [30] to acquire each ob-
ject and corresponding bounding box. We collect our inter-
nal 603K images with clear human faces for ID-preserving
generation, where the cropped face is the input ID, and the
original image is the target output. We utilize the caption of
the whole image as the input prompt. The used mixture for
UniVG multi-task training (stage II) is presented in Table 1.
At stage III, we set a 1:1 ratio between ID-preserving gen-
eration and all other tasks to further learn ID customization
and keep the original ability in generation and editing.
Implementation Details. We treat internal CLIP-bigG [27]
as the text encoder, and UniVG contains 38 layers of MM-
DiT with a hidden dimension size of 2432 and 38 attention
heads, leading to a total of 3.7B model. We apply an internal
8-channel VAE to extract the latent features of an image for

MagicBrush EmuEdit

Method CLIP-T↑ CLIP-I↑ CLIP-T↑ CLIP-I↑

InsP2P 24.5 83.7 21.9 83.4
MGIE 26.4 84.6 22.4 84.2
EmuEdit 26.1 89.7 23.1 85.9

OneDiff 24.8 88.5 22.0 85.5
OmniGen 25.8 86.3 23.1 82.9
UniVG 29.5 86.3 25.9 84.7

Table 3. Results of instruction-based editing on MagicBrush [68]
and EmuEdit [50].

diffusion modeling. For ID-preserving generation, we have
the CLIP image encoder as the external encoder for a face.
We follow the recipe to train UniVG using Adafator [49] on
512-v5p TPUs. During inference, we set the guidance scale
(αX , αV ) to (4.0, 1.5). All implementations are done using
the AXLearn framework1.

4.2. Evaluation Results
Text-to-Image Generation. As there are many aspects to
study the quality of text-to-image, we adopt GenEval [15]
and T2I-CompBench [24] for the compositionality, such as
object, texture, color, and relative position. We also include
DSG [7], which utilizes visual-question answering to verify
whether the generated image aligns with the prompt. From
HPSv2 [59], we investigate the visual quality with respect to
the pre-trained human preference score. We consider con-
temporary unified models, OneDiff [28] and OmniGen [60],
as our main baselines. In addition, we also treat SDXL [43],
FLUX.1 [26], and SD3 [10] as specific text-to-image meth-
ods for the comparison. Table 2 shows that our UniVG sur-
passes those unified baselines on both compositionality and
semantic across all benchmarks. These results support that
we can precisely follow the prompt yet perform visually ap-
pealing text-to-image. Note that UniVG has even fewer pa-
rameters than OmniGen, which highlights the advantage of
our model design and multi-task training. Furthermore, we
achieve competitive performance to the task-specific SD3,
which contains twice more parameters than ours. This also
encourages the potential of the generalist model, where we
can maintain the capability to handle various tasks well.
Instruction-based Editing. To evaluate instruction-based
editing, we consider the testing set of MagicBrush [68] and
EmuEdit [50]. We use CLIP-T [21] between the target cap-
tion and the edited image for text-visual alignment. We also
apply CLIP-I to investigate the input preservation. We have
InsP2P [4], MGIE [11], EmuEdit [51] as specific models for
editing. Table 3 comparing our UniVG with baselines. Sur-
prisingly, we even achieve significantly higher CLIP-T than
task-specific methods, which shows our strong ability in in-
struction following to modify an existing image. In compar-

1AXLearn: https://github.com/apple/axlearn

https://github.com/apple/axlearn


Figure 3. Qualitative examples of text-to-image generation. Note that we simplify the prompt for better presentation.

Unsplash-50

Method ID↑ CLIP-T↑

PhotoMaker 0.193 27.4
InstantID 0.648 26.4
PuLID 0.654 31.2

OneDiff 0.283 26.8
OmniGen 0.294 27.1
UniVG 0.329 28.1

Table 4. Results of ID-preserving
generation on Unsplash-50 [12].

Unsplash-50

3-Stage ID↑ CLIP-T↑

✗ 0.245 28.3
✓ 0.328 28.1

Table 5. Training all at once
results in worse performance
for ID preservation.

ison with the unified OmniGen, UniVG has comprehensive
advantages in CLIP-T and CLIP-I, which are the two trade-
off goals of instruction-based editing. Though OneDiff has
higher CLIP-I, its modification is usually limited and results
in low CLIP-T that cannot meet the editing expectation. For
example, in Fig. 4, OneDiff fails to add circular lights to the
ceiling. MGIE and OmniGen are attempting, but the results
do not look visually appealing. In contrast, UniVG follows
the same visual flow for editing. Moreover, we are the only
model that can achieve complex modifications, such as re-
placing with “green grass wrapper” or “black frames”. Our
UniVG also supports diverse purposes, including removal,
facial emotion, and overall artistic stylization. These qual-
itative results illustrate the strength of UniVG for universal
instruction-based image editing.

ID-preserving Generation. We adopt Unsplash-50 [12] to
evaluate ID-preserving generation, which provides human

faces and descriptions to make the model generate person-
alized images. We then follow CurricularFace [25] to cal-
culate the facial embeddings for ID similarity and CLIP-T
for the prompt-image score. We treat PhotoMaker [31], In-
stantID [56], and PuLID [17] for the task-specific models.
In Table 4, UniVG again outperforms the unified baselines
with notable improvements in face consistency, which high-
lights the effectiveness of our design to inject flexible guid-
ance and control the further generation. Moreover, a higher
CLIP-T demonstrates that we also lead to a superior prompt
following for ID customization. Compared to task-specific
methods, InstantID and PuLID rely on the pre-trained face
encoder to bring strong ID preservation. Nevertheless, their
generated faces are significantly limited to inputs and can-
not support complex manipulations [28]. Table 5 highlights
the cruciality of our carefully designed multi-stage training,
where training all at once results in catastrophic forgetting
for ID preservation (notably lower ID similarity).

4.3. Ablation Study

Table. 6 presents the ablation study of our multi-task train-
ing. Compared to row (a), row (b) shows strong instruction-
based editing, yet maintains a competitive performance in
text-to-image generation. This points out that learning both
together will not hurt either but can enable these two abili-
ties in a single model. Row (c) then trains on ID-preserving
generation. However, there is a notable drop in editing (e.g.,
CLIP-T from 28.3 to 26.9 on MagicBrush) as the model is
placing more on ID customization. To overcome this issue,



Figure 4. Qualitative comparisons of instruction-based editing.

Task MagicBrush EmuEdit Unsplash-50

♠ ♥ ♦ ♣ GenEval↑ CompBench↑ DSG↑ HPSv2↑ CLIP-T↑ CLIP-I↑ CLIP-T↑ CLIP-I↑ ID↑ CLIP-T↑

(a) ✓ ✗ ✗ ✗ 0.71 0.49 0.76 28.4 - - -
(b) ✓ ✓ ✗ ✗ 0.70 0.48 0.76 28.3 28.3 88.0 25.2 86.1 -
(c) ✓ ✓ ✗ ✓ 0.70 0.48 0.75 28.2 26.9 88.2 24.9 85.4 0.327 28.9
(d) ✓ ✓ ✓ ✗ 0.70 0.48 0.75 28.1 29.8 87.4 26.2 84.8 -
(e) ✓ ✓ ✓ ✓ 0.70 0.48 0.75 28.2 29.5 86.3 25.9 84.7 0.329 28.1

Table 6. Ablation study of multi-task training. ♠ Text-to-Image Generation and In/outpainting; ♥ Instruction-based Editing; ♦ Auxiliary
Tasks and Layout-guided Generation; ♣ ID-preserving Generation. Our receipe: Stage I (♠); Stage II (♠+♥+♦); Stage III (♠+♥+♦+♣).

Text-to-Image Editing

Method #Param Time GPU Time GPU

OneDiff 2.8B 6.3 8151 10.8 9155
OmniGen 3.8B 9.3 8813 36.8 11895
UniVG 3.7B 10.4 8849 10.4 8849

Table 7. Results of efficiency comparisons on time (sec) and GPU
cost (MB) during inference (5122).

we involve the auxiliary tasks to enhance the visual under-
standing of UniVG. Row (d) gains further improvements in
editing over row (b), which highlights the usage of auxiliary
tasks. This time, even with ID-preserving generation, row
(e) strikes the best balance with all favorable performance.

Inference Efficiency. In addition to generation quality, we
also investigate the inference time and GPU cost on a single
NVIDIA A100 GPU in Table. 7. This comparison is done
with image resolution 5122 and model precision BFloat16.

Figure 5. Resuling of model scaling with B (416M), L (1.8B), and
XL (3.7B); CLIP-T for EmuEdit and ID for Unsplash-50.

Both OneDiff and OmniGen are compelled to concatenate
additional images with the noise sequence, which signifi-
cantly increases the computation overhead of MM-DiT, re-
sulting in a notable degradation for editing (e.g., OmniGen
requires 36+ seconds). On the other hand, our UniVG con-
siders the latent noise, input image, and mask all along with
the channel dimension, which can maintain the same total
sequence length for both generation and editing. Therefore,
we even bring a better efficiency to OneDiff in editing, yet
with a larger model. These observations also highlight that



Figure 6. Qualitative examples of layout-guided generation, where
the colors of blocks are aligned with the objects in the prompt.

Figure 7. Qualitative examples of background in/outpainting and
text-guided in/outpainting.

UniVG not only leads to superior image generation but also
consistently high efficiency across diverse tasks.
Model Scaling. We study the model scaling performance
of unified image generation. We consider three model sizes,
including B (416M with 18 layers), L (1.8B with 30 layers),
and XL (3.7B with 38 layers). Fig. 5 illustrates that as scal-
ing up, the performance keeps improving and generalizes to
generation and editing tasks. This encourages the immense
potential for more powerful and capable future models.
More Visualization Results. Fig. 6 presents layout-guided
generation, where the actual prompt is joined with the lay-
out (e.g., “a glass of wine next to a bottle. wine in the blue
block. bottle in the green block.”). UniVG follows the spa-
tial guidance of each object to generate the image. We can
also deal with counting (e.g., two donuts) and present them
in the assigned positions.

Fig. 7 shows the results of in/outpainting. Though with-

Figure 8. Qualitative examples of auxiliary tasks, including depth
estimation, pose estimation, and referring segmentation.

out prompts, our UniVG still recovers the missing regions
(e.g., car and human face). We can even imagine the overall
visual scene from just a small block and perform outpaint-
ing to expand it as a reasonable image (e.g., parrot and street
view). UniVG further controls this through the text, where
we can inpaint a specific draw text (e.g., “limited offer”) or
object (e.g., detective). Similarly, we guide and outpaint the
whole image to support creative image completion.

Fig. 8 illustrates that our UniVG also supports computer
vision applications in auxiliary tasks, such as depth estima-
tion and pose estimation. Regarding referring segmentation,
we can recognize the precise object (e.g., car and man with
ball) or even split out the background (e.g., sea). This find-
ing also presents the potential of treating our model to unify
both visual understanding and generation.

5. Conclusion

In this paper, we introduce UniVG, a generalist diffusion
model that unifies a diverse set of image generation tasks
within a single framework. We conduct a thorough study
and ablate key modeling and data choices, adopting a min-
imalist model architecture design and introducing a three-
stage training pipeline. Our results demonstrate that a sin-
gle model can effectively handle all tasks without compro-
mising the core text-to-image generation performance. For
future work, we plan to incorporate additional vision per-
ception tasks into the framework and further scale up the
model to train an even more powerful generalist model.
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