A Distributed Scheme for Accelerating Semantic
Video Segmentation on An Embedded Cluster

Hsuan-Kung Yang*, Tsu-Jui Fu*, Po-Han Chiang*, Kuan-Wei Ho', and Chun-Yi Lee
Elsa Lab, Department of Computer Science
National Tsing Hua Unversity
Hsinchu City, Taiwan
{hellochick, rayful9960zig, ymmoy999, kuan.wei.ho, cylee} @ gapp.nthu.edu.tw

Abstract—We present a methodology for enhancing the
throughput of semantic video segmentation tasks on an embedded
cluster containing multiple embedded processing elements (ePEs).
The methodology embraces a scalable master-slave hierarchy
and features a global and local key management scheme for
allocating video frames to different ePEs. The master ePE divides
each video frame into frame regions, and dynamically distributes
different regions to different slave ePEs. Each slave ePE executes
either a segmentation path or a flow path: the former is highly
accurate but slower, while the latter is faster but less accurate.
A lightweight decision network is employed to determine the
execution path for each slave ePE. We propose a global and
local key management scheme to facilitate the execution of the
embedded cluster, such that the average processing latency of
each frame is significantly reduced. We evaluate the performance
of our methodology on a real embedded cluster in terms of
accuracy and frame rate, and validate its effectiveness and
efficiency for various ePE configurations. We further provide
a detailed latency analysis for different configurations of ePEs.

Index Terms—embedded cluster, semantic video segmentation,
optical flow, decision network, global and local key management.

I. INTRODUCTION

Deep convolutional neural networks (DCNNs) have achieved
great success in a number of research areas of computer
vision (CV), including image classification [1], [2], object
detection [3], [4], and semantic segmentation [5], [6]. Semantic
segmentation has been considered as a much more difficult task
than the former two areas, as it requires performing dense pixel-
level predictions for input images. Although recent advances in
DCNN-based semantic segmentation techniques have achieved
high accuracies [5]-[8], these techniques are still not directly
applicable to embedded systems because of their significantly
longer execution latency and heavier computational workloads.

On the other hand, applications requiring semantic video
segmentation has emerged recently in a wide range of domains,
including autonomous vehicles, unmanned aerial vehicles
(UAVs), virtual reality, etc. These applications demand both
high frame rates per second (fps) (typically up to 20 fps or
even more for real-time applications) and high pixel-level
accuracy, while requiring low computational overheads for the
models such that they are able to be executed on embedded

s

and T indicate equal contributions.

Fig. 1. Example qualitative results generated by the proposed methodology.
The left-hand side and the right-hand side figures illustrate the sample input
frames and the corresponding output semantic segmentations, respectively.

processing elements (ePEs). Although several approaches for
real-time semantic segmentation [9]-[12] have been proposed,
they usually suffer from accuracy degradation. In addition, these
techniques similarly incur expensive computational workloads,
as they are not specifically developed and tailored for ePEs.
Motivated by the requirements of executing DCNN models
on embedded systems, a number of emerging devices and
accelerators targeting at DCNN applications have also emerged
in the past few years. These devices are capable of carrying out
computations for simple DCNN models. However, delivering
satisfactory results for complex models in real time is still
challenging for them due to their limited ePEs, memories,
and battery budgets. Researchers in recent years have pro-
posed different approaches to accelerate the computation of
DCNNs deployed on devices other than graphics processing
units (GPUs). These approaches include distributed program-
ming [13], [14], parallel data fusion [15], and utilization of
high-level tokens to represent computation nodes [14]. Efficient
architectures [9]-[12], [16] and parameter pruning methods
have also been proposed to reduce the size of DCNNSs. Although
these methods are effective in reducing the latencies of DCNNss,
most of them still suffer from inevitable accuracy degradation.
In order to address the issues mentioned above, we propose
a distributed methodology for allocating the heavy computa-
tional workloads of semantic video segmentation to a cluster

containing multiple ePEs. The proposed methodology is built
atop the framework of dynamic video segmentation network
(DVSNet) [17], and is able to adapt to different numbers of
ePEs in the embedded cluster. Instead of separating a DCNN
model and distributing the model to multiple ePEs, the proposed
methodology adaptively apply different segmentation strategies
to different video frame regions via two types of paths: a
segmentation path and a flow path. The former is composed of

a highly accurate DCNN model with a longer execution latency.

The latter is developed based on the concept of optical flow
estimation, and is shorter in its latency but less accurate. As
different frame regions in a video sequence typically experience
different extents of changes, the two segmentation strategies
can be applied to different frame regions to maximally exploit
the spatial and temporal redundancies in consecutive frames.

In this paper, we implement the proposed methodology on
an embedded cluster in a distributed framework. The embedded
cluster contains a master ePE and a number of slave ePEs. The
number of slave ePEs is scalable. The master ePE divides video
frames into frame regions, and dynamically distributes these
frame regions to the available slave ePEs via the assistance
of a workload manager. Each slave ePE executes either of the
two paths mentioned above. In order to balance the workloads
and make the most efficient use of the two paths, we further
propose a global and local key management scheme. The
scheme continuously maintains a key buffer in each ePE and
a key table in the master ePE, such that the slave ePEs can
execute their flow paths as frequently as possible without
significant accuracy degradation. The proposed methodology is
compatible with contemporary embedded platforms whose ePEs
are capable of executing the two execution paths. To validate
the effectiveness of the proposed methodology, we perform
extensive experiments on real embedded clusters containing
multiple NVIDIA Jetson TX2’s as our ePEs. Jetson TX2 has
been widely employed in embedded applications, and proven to
offer sufficient computing power with limited memory capacity
and battery budget [18]-[20]. We investigate various cluster
configurations, and demonstrate that our methodology does
offer higher fps, superior speedup, and negligible accuracy drop
when compared with several representative baseline methods.
Moreover, we comprehensively analyze the execution latencies
of the ePEs for a number of different cluster configurations.

The main contributions of the paper are as the following:

« An embedded cluster architecture consisting of multiple
ePEs for enhancing the overall frame throughput and

execution efficiency of semantic video segmentation tasks.

e A distributed version of DVSNet framework [17] for
the master ePE to dynamically allocate workloads (i.e.,
different regions in a video frame) to available slave ePEs,

such that video frames are able to be segmented in parallel.

o A global and local key management scheme for regulating
and maintaining the segmentation accuracy (i.e., mIoU)
and frame rate (i.e., fps) of the proposed methodology.

« An extensive set of experiments, analysis, and discussion
of the proposed methodology on real embedded clusters.

The remainder of this paper is organized as follows. Section II
reviews the background material related to this work. Section III
walks through the proposed methodology, its framework and
components, as well as the key management scheme (in terms
of pseudocodes) in detail. Section IV presents the experimental
results and analyzes their implications. Section V concludes.

II. BACKGROUND

In this section, we provide background material necessary
for understanding the technical contents of this paper. We first
briefly introduce the fundamental concepts and related works
of semantic segmentation and optical flow estimation. Then, we
describe the architecture and working procedure of DVSNet.

A. Semantic Segmentation

Semantic segmentation is one of the key research directions
in CV, which aims at performing pixel-level predictions (i.e.,
dense predictions) for an image. An example of semantic
segmentation is depicted in Fig. 1. A semantic segmentation
model typically predicts a segmentation logit for each pixel first,
and then classifies each pixel based on it. The segmentation
logit of a pixel represents the probabilities of a predefined
set of classes that the pixel may belong to. The accuracy of
a semantic segmentation model is commonly measured by a
metric called mean Intersection-over-Union (m/IoU), given by:

Neiass TP (Z)

mIoU = TP(i)+ FP(i) + FN(i)’

1
Nclass ()

where N jqss is the number of classes. TP(i), FP(i), and
F N (3) are the pixel counts of true positive, false positive, and
false negative pixels of the i*" class in the image, respectively.

Training a highly accurate semantic segmentation model for
performing such dense pixel-wise predictions has long been
considered much more challenging than image classification
and object detection tasks. State-of-the-art semantic segmen-
tation models [5], [6] typically demand significant amount of
computational workloads due to their deep architectures. There-
fore, most of them are inappropriate for embedded systems. A
number of lightweight DCNN architectures have been proposed
as candidate solutions in the past few years. For instance,
ERFNet [11] employs a layer structure that uses residual
connections and factorized convolutions for enhancing the
efficiency of the DCNN model. ENet [10] and ESPNet [12] are
based on specialized convolutional modules which are efficient
in terms of computation, memory, and power consumption,
and thus are more suitable for edge devices. However, they
generally suffer from serious drops in segmentation accuracy,
which are essential for video applications. Although a highly
efficient DCNN architecture called MobileNet [16] has been
applied to semantic segmentation tasks [5] and has achieved
significant improvements in mIoU and fps in recent years, the
Jps delivered by [5] is still insufficient for embedded devices
to perform real-time applications. A comparison of the above
techniques with our methodology are presented in Section IV.

ePE

Master ePE) Slave ePE scalability

Flow Path(P,,

Assemble regional

Input images €
segmentations

Output segmentation

€1 Slave "
Workload manager —/ ePE 1 “m(s' | | ‘ [
) ecision
network (DN —» [score] threshold?
: (o) - ePE || ePE || ePE || ePE

Segmentation Path (P, g)
([Pree) ||[(Pea) | | [(Poee) | || Pres

i Pitow | i Phow i |i Pl | @]

L - @ Master embedded PE
[
[&

Regional output segmentation (O:) Slave embedded PE

Fig. 2. An overview of the framework.

B. Optical Flow Estimation

Optical flow estimation [21] is a technique for evaluating the
motion of objects between a reference image and a target image.
It is usually represented as a sparse or dense vector field, where
displacement vectors are assigned to certain pixel positions
of the reference image. These vectors point to where those
pixels can potentially be found in the target image. Mainstream
approaches for estimating the optical flow between two
consecutive image frames are based on the work of Horn and
Schunck [21]. A few recent research works [24] are proposed
to efficiently deal with large displacement problems occurring
in realistic videos. These techniques are, unfortunately, mostly
designed to run on central processing units (CPUs), and are
thus unable to leverage the computational efficiency offered
by contemporary embedded systems equipped with GPUs.
Different from the approaches mentioned above, FlowNet [22]
is the first DCNN model specifically developed for performing
optical flow estimation on GPUs. It then soon evolved into
another enhanced model called FlowNet 2.0 [23]. FlowNet 2.0
features a stacked architecture, a better learning schedule than
FlowNet, as well as a special sub-network design focusing
on small displacement extraction for obtaining a finner flow
estimation than the former version. As a result, we incorporate
the building blocks from FlowNet 2.0 into our methodology.

C. Dynamic Video Segmentation Network (DVSNet)

DVSNet [17] is a framework which incorporates two distinct
DCNNs for enhancing the frame rates of semantic video
segmentation tasks while maintaining the accuracy of them.
DVSNet achieves such improvements by exploiting spatial and
temporal redundancies in consecutive video frames as much
as possible and then adaptively processing different frame
regions using different DCNNs. The first DCNN employed by
DVSNet is called the segmentation network, which generates
highly accurate semantic segmentations, but is deeper and
slower. The second DCNN is called the flow network, which
employs a warping function [23] to generate approximated
semantic segmentations and is much shallower and faster than
the segmentation network. DVSNet takes advantage of the fact
that different regions in a video sequence experience different
extents of changes to avoid reprocessing every single pixels

Fig. 3. The master-slave hierarchy. Different slave ePEs
can execute different execution paths.

in consecutive frames. Frame regions with huge differences
in pixels between consecutive frames, where the contents
may have changed significantly, have to pass through the
segmentation network. Otherwise, they are processed by the
flow network. In other words, different frame regions in a frame
may traverse different networks of different lengths when they
are presented to DVSNet. In order to determine whether an
input frame region has to traverse the segmentation network or
not, DVSNet further employs a lightweight decision network
(DN) to evaluate a confidence score for each frame region. A
confidence score lower than a pre-defined decision threshold
indicates that the corresponding frame region is required to be
processed by the segmentation network. DVSNet allows the
decision threshold for the confidence score to be customizable.

III. METHODOLOGY

In this section, we present the architecture and the implemen-
tation details of the proposed methodology. We first provide
an overview of the entire framework, followed by a detailed
description of the components in it. Next, we introduce the
global and local key management scheme. Finally, we walk
through the inference procedure as well as its pseudocodes.

A. Overview of the Framework

Fig. 2 illustrates the proposed framework, which contains a
master ePE and IV slave ePEs, where NV is a scalable integer.
Fig. 3 illustrates the master-slave hierarchy of the framework.
The notations used in this paper are summarized in Table I. The
main objective of the framework is to enhance the throughput
(i.e., the frame rates) of semantic video segmentation by
multiple ePEs, while maintaining the mIoU accuracy of the
system by exploiting the benefits offered by DVSNet. The
master ePE divides each input frame into four frame regions,
and allocates each frame region to an available slave ePE by
dynamic scheduling to generate the semantic segmentation of
the regions. The unallocated frame regions are stored in a
queue managed by a workload manager, which is responsible
for selecting an appropriate slave ePE to process the region
stored at the head of the queue. The information exchanged
between the master ePE and the slave ePEs is regulated by the
global and local key management scheme, which is discussed in
Section III-C. The master ePE is also responsible for gathering

TABLE I
THE NOTATIONS USED IN THIS PAPER.

t The current timestep index

r Region index (ranges from 1 to 4)

Ty Timestep of keyframe region r stored in keytable
C? | Frame region r of the current frame at timestep ¢
K! | Frame region r of the key frame at timestep ¢

O! | Segmented result of frame region r at timestep ¢
St Confidence score of frame region r at timestep ¢
Lt | Segmentation logits of frame region r at timestep ¢

the semantic segmentations of the frame regions that belong
to the same frame from the slave ePEs, and assembling them
to generate the final semantic segmentation of the frame. The
above procedures are illustrated in the blue region of Fig. 2.
The slave ePE contains three major components: a segmen-
tation path P;.g4, a flow path Py, and a DN. Each slave ePE
has the same architecture, except that the execution paths of
different slave ePEs are allowed to be different, as depicted
in Fig. 3. A frame region C! forwarded to a slave €ePE is
processed by either P,y or Pfjoy. The primary function of
Piseq is to directly generate high-quality semantic segmentation
O! from C! by DCNN models such as [5], [6]. It requires
a longer period of processing time, but is able to deliver a
higher mIoU accuracy for the generated O. Please note that
the frame region C? which travels through Py, is referred to
as the key frame region K, where T is used to record the
timestep ¢ (i.e., T :=t and K, := C,. when C! is processed
by Pseg). On the other hand, Py, generates Of from (CY,
KT), as well as the segmentation logits LI of K by optical
flow estimation, where ¢ is always larger than or equal to 7T,
and 7 is required to be the same for the inputs (C?, K') of
Priow. The processing latency of Pyio,, is much lower than
that of P4, however, the mIoU accuracy achievable by Py,
decreases as (t — T') increases. In other words, increasing the
time span between C! and K! may lead to an O! with a
lower mIoU when Cﬁ is processed by Prio,. DN is a neural
network trained to evaluate a confidence score S! from C!.
The role of DN is to determine the execution path according
to St. If St is higher than a predefined threshold &, Py, is
selected to process C’ﬁ. Otherwise, Ps.q4 is used to process Cﬁ
and update K" as C?. The above mechanism enables different
slave ePEs to execute frame regions with different latencies.

B. Components of the Framework

In this section, we describe the implementation details of
Pseg, Priow, and DN in the slave ePEs, as well as the workload
manager in the master ePE in separate paragraphs.

Segmentation path (P;.,). The architecture of P, is
flexible in the proposed framework, as long as the selected
DCNN model is able to generate high-quality O%’s from C*’s.
In this paper, we employ DeepLabv3+ [5] as our Pi.,. The
main advantage of DeepLabv3+ is that one implementation of
its backbone feature extraction networks is based on MobileNet-
v2 [16], a highly efficient and accurate DCNN architecture
specifically developed for vision applications on embedded

....................... -

t=n+k

Latter part of
flow path P, “flow

- -| | > |score
fc fc| |fe

Decision network (DN)

Segmentation path

P seg

Fig. 4. The architecture of the decision network (DN).

systems. In this work, Ps., is pre-trained on the MS-COCO
dataset [25], and fine-tuned on the Cityscapes dataset [26].

Flow path (Py,,). As described in Section III-A, Py,
estimates the optical flow between C! and K! for frame
region 7, where 7" < t. The estimated optical flow along
with the segmentation logits L1 of K are then processed by
a warping function [23] to generate Of. The quality of O
generated by Py;,,, may decrease as (t —T') increases [17]. We
adopt FlowNet 2.0 [23] as Py, FlowNet 2.0 is a lightweight
stacked DCNN containing multiple sub-networks for estimating
small and large displacements with high accuracy. The latency
of Py is significantly lower than that of P,.4. Please note
that Py, is executed once for every single input frame region
allocated to the slave ePE, as the encoded feature map of Py,
is also used as the input for DN, as illustrated in Fig. 4.

Decision network (DN). DN is a shallow regression model
pre-trained for determining whether C?. has to go through Pk,
or Pyioy. Fig. 4 illustrates the architecture of DN (the red
part). It is composed of one convolutional layer and three fully-
connected layers. DN takes as input the feature map extracted
from the former part of Py, to evaluate Sﬁ, which is used
as a reference to decide the execution path of C!. An S}
satisfying the condition (S? > §) implies that it is likely for
Priow to generate high-quality Oﬁ. As a result, Py, is set as
the execution path when (S’ > §) is met. Otherwise, Py, is
selected as the execution path to maintain the mIoU of Of.

Workload manager. The workload manager resides in the
master ePE and is responsible for allocating frame regions to
the slave ePEs. It maintains a first-in, first out (FIFO) queue
for accommodating unallocated frame regions. In addition, it
keeps another FIFO queue to continuously track the indexes
of the idle slave ePEs. When a frame region is to be allocated,
the second queue pops out an index if it is not empty. The
master ePE then uses that index to forward the frame region to
the idle slave ePE. If the queue is empty, the master ePE then
waits until a slave ePE becomes available. When a slave ePE
completes its task, its index is pushed back into the queue.

Master ePE

‘Workload manager

assign region image

Input images

slave eP]

key table

look up key table
check if outdated or not

v

_
@ update =5 ||| Te=s
It keyframe
local key buffer
1 Slave ePE 2
m update :
logits :
Segmentation Path (Pseg)
4 /—. local key buffer =5
—=IITI_| argmax T=5
.
Segmentation logits Region output image local key buffer
Slave ePE 1 Slave ePE N

Fig. 5. The global and local key management scheme.

C. Global and Local Key Management Scheme

Fig. 5 illustrates the global and local key management
scheme. The primary objective of the scheme is to maintain a
key buffer in each ePE to store a 4-tuple (LTI, I:;ZTZ, Lg?’, L%:‘*)
of segmentation logits and another 4-tuple (K7 ', K32, K3°,
K4T4) of key frame regions, such that they can be used when
Priow s selected as the execution path. The key buffer in the
master ePE is called the global key buffer, while that in the
slave ePE is called the local key buffer. The contents of the
key buffers from different ePEs are not necessarily the same.
However, global key buffer always keeps the tuples containing
the newest L,’s and K,’s respectively for the four frame
regions. The master ePE additionally maintains a key table for
each of the slave ePEs to monitor (17, 15, 13, T}) of their local
key buffers, as depicted in Fig. 5. When a slave ePE is selected
by the workload manager to process a frame region C!, the
master ePE first compares the difference between T,. of its
global key buffer and that stored in the key table corresponding
to the slave ePE. If the difference is larger than a threshold
T (e.g., slave ePE N, assume that 7 = 5), the master ePE
then forwards its L7 and K" to the slave ePE to update the
corresponding entry in the local key buffer. This ensures that

the slave ePE has the newest LI* and K" to perform Pjjoy.

If a slave ePE performs P, for a frame region C. (e.g., slave
ePE 1), the newly generated LI* is transmitted back to the
master ePE to update L and K~ of the global key buffer,
as well as T,. of the corresponding key fable. This ensures that
the global key buffer maintains the latest L,’s and K,’s for
the four frame regions, and allows the master ePE to keep
track of the status of the slave ePEs. Please note that in the
proposed key management scheme, the ePEs communicate in
a peer-to-peer fashion, rather than broadcasting to all of the
ePEs. Peer-to-peer communication enables the interconnects
to be efficiently utilized, alleviating potential congestions in

Algorithm 1 Master ePE

. InputQueue: A FIFO queue for accommodating unallocated frame regions.
. IdleQueue: A FIFO queue for tracking the indexes of idle slave ePEs.

1
2
3:
4: KeyTable(m, i): A table for monitoring T; on slave ePE m.

5: GlobalKeyBuf fer(i): A buffer for storing the newest K;, L;, and T; on

master ePE.

6

7

8

9

: function MASTERSENDER
while T'rue do
for i = 1 to 4 do

10: Cf, t = InputQueue.front()

11: m = IdleQueue.front() > Obtain the index of an idle slave ePE
12:

13: T; = KeyTable(m, i)

14: K, L;, T} = GlobalKeyBuf fer(i)

15: if T,L-' -T; > T then

16: SENDTOSLAVE(m, 4, t, True, Cf, K;, L;)

17: else

18: SENDTOSLAVE(m, i, t, False, Cf, null, null)
19:

20: function MASTERRECEIVER

21: while T'rue do

22: m, i, t, is_change, Of, Lt = RECEIVEFROMSLAVE
23: IdleQueue.push(mm)

24:

25: if is_change is True then

26: KeyTable(m, i) =t

27: GlobalKeyBuf fer(i) = C’f, L:, t

28:

29: Outputs(t, i) = Of

30: Assemble the segmentation result if all Outputs(t, -) are ready

Algorithm 2 Slave ePE

. Psegy: The segmentation path path that directly generates high-quality Of
: Pyiow: The flow path that generates Of by optical flow estimation.

1
2
3:
4: LocalKeyBuf fer(i): A buffer for storing the locally newest K; and L;.

5: DN(EncodedFeature): A regression model for predicting Sf using the

encoded feature from the former part of Prjoq.

6

7

8

. function SLAVE
while T'rue do

9: m, , t, is_change, C’Z K;, L; = RECEIVEFROMMASTER
10:
11: if is_change is True then > Global forces to update K; and L;
12: LocalKeyBuf fer(i) = K;, L;
13:
14: K;, L; = Local KeyBu f fer(i) > Obtain the local newest K; and L;
15:
16: EncodedFeature = FormerPartO f Priow (K, Cf)
17: Sf = DN(EncodedFeature)
18: if S! > § then
19: O;’ L;? = Latter PartO f Py ow(EncodedFeature, L;)
20: is_change = False
21: else
22: Of, Lt = Py y(CY)
23: is_change = True
24: LocalKeyBuf fer(i) = Cf, Lt
25:
26: SENDTOMASTER(m, i, t, is_change, O, L)

the communication channels of the embedded cluster.

D. Inference Procedure and Pseudocodes

We summarize the proposed global and local key manage-
ment scheme in Algorithms 1 and 2. Algorithm 1 presents the
procedures of the master ePE, while Algorithm 2 describes the
procedures for each of the slave ePEs. In these Algorithms,
the primary function of the master ePE is to distribute frame
regions to the slave ePEs, and gather the predicted results from
them. The master ePE maintains a global key buffer (denoted as
GlobalKeyBuffer) and key table (denoted as KeyTable) to keep

TABLE II
SPECIFICATION OF THE EMBEDDED PE (NVIDIA JETSON TX2)
ADOPTED IN OUR EXPERIMENTS

Item Specification
CPU Denver + Cortex-AS57
CPU cores 6
GPU 256 CUDA cores (Pascal architecture)
GPU Frequency 0.85 Ghz
Memory 8GB DDR4

Network bandwidth
Power consumption

1 Gbits/sec
7.5W (Average) / 15W (Maximum)

track of the latest key frame regions (K Tl, KQT 2, K?T 3, KZ“)
and segmentation logits (LlTl, LQTQ, L3T3, Lf‘*), as discussed in
Section III-C. On the other hand, each slave ePE receives frame
regions sent from the master ePE, performs segmentation, and
also maintains a local key buffer (denoted as LocalKeyBuffer)
to keep track of the key frame regions and segmentation logits.

Algorithm 1 defines the procedures performed by the master
ePE, which includes a MasterSender function and a Master-
Receiver function (lines 20 to 27). Lines 1 to 2 define the two
FIFO queues managed by the workload manager: InputQueue
and IdleQueue, as described in Section III-B. Lines 4 to 5 define
the KeyTable for storing the timesteps of the key frame regions
for each slave ePE, and GlobalKeyBuffer for storing the global
key frame regions as well as the corresponding segmentation
logits. From line 7 to 18, MasterSender first obtains a frame
region C} (where i denotes the frame region number) and an
idle slave ePE m from InputQueue and IdleQueue, respectively.
It then queries KeyTable for the stored 7; for the corresponding
tuple (m, i), as well as GlobalKeyBuffer for the stored K,
L;, and T according to the frame region 4. If the difference
(T! —T;) is larger than T, MasterSender forwards the 3-tuple
(C!, K;, L;) to slave ePE m. Otherwise, it only sends C! to m.
From line 20 to 27, MasterReceiver first receives O! and L
from slave PE m, and pushes m back to the IdleQueue. If m
updates its LocalKeyBuffer (i.e., is_change == True and m
performs Ps.), the tuple (m, 4,t) is used for updating KeyTable.
Meanwhile, (C?, L;,i,t) is used for updating GlobalKeyBufer.
Line 30 indicates that when O! of all the regions (i = 1 to 4)
of the same frame are available, the master ePE then assembles
them to generate the final segmentation of the entire frame.

Algorithm 2 presents the workflow of a slave ePE. Lines 1
to 2 define the two execution paths for generating Of: P, and
Priow » as described in Section III-B. Lines 4 to 5 define the
LocalKeyBuffer for storing the locally newest K; and L;, and
DN for evaluating S which is used as a reference to decide
the execution path. Line 9 defines the parameters received
from the master ePE. If the master ePE requires the slave ePE
to update its LocalKeyBuffer (i.e., is_change == True at
line 11), the latter then replaces the local key frame region
and segmentation logits with the global one, as defined in
lines 11 and 12. The slave ePE then obtains K; and L; from
its LocalKeyBuffer. Next, from lines 16 to 24, the slave ePE
executes DVSNet to obtain the predicted O} and L, and sent

TABLE III
COMPARISON OF THE QUANTITATIVE RESULTS OF THE BASELINES AND THE
PROPOSED METHODOLOGY. THE FIRST FOUR ROWS CORRESPOND TO THE
BASELINE METHODS, WHILE THE REMAINING SEVEN ROWS CORRESPOND
TO OUR METHODOLOGY. PLEASE NOTE THAT THE RESULTS OF ENET,
ERFNET, AND ESPNET ARE OBTAINED FROM [12].

Configurations mloU FPS Speedup

SegPath (DeepLabv3+) [5] 72.63 1.52 -
ENet [10] 58.3 9.2 -
ERFNet [11] 68.0 3.6 -
ESPNet [12] 60.3 9.0 -
Single (DVSNet) [17] 67.81 10.67 Ix

1+1 67.81 8.74 0.82x

1+2 67.42 17.59 1.65x

1+3 66.24 22.04 2.07x

1+4 6592 28.16 2.64x

1+5 6522 31.75 2.98x

1+6 65.49 28.22 2.64x

them back to the master ePE by the SendToMaster function
(line 26). If the slave ePE performs P;.q its LocalKeyBuffer
is updated with (C!, L!) (line 24). It also notifies the master
ePE through SendToMaster by setting is_change to True.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results and
discuss their implications. Fig. 1 presents a few qualitative
results generated by our framework, where the left-hand side
and the right-hand side figures are the sample input frames and
the corresponding output semantic segmentations, respectively.
These qualitative results serve as examples for justification
and demonstration of the proposed methodology presented in
Section III. We organize the presentation of our experimental
results as the following. First, we introduce our experimental
setup in Section IV-A, which covers the specifications of the
ePE, our embedded clusters, as well as a description of the
training dataset used. Then, we analyze the quantitative results
measured from the real embedded clusters, compare them
against the baseline approaches mentioned in Section II, and
discuss the impacts of our methodology on mIoU and fps for
a number of cluster configurations in Section IV-B. Finally, we
investigate into the breakdowns of the execution latencies for
the ePEs for various cluster configurations in Section IV-C.

A. Experimental Setup

a) System configuration: We adopt NVIDIA Jetson TX2
as our ePE for all of our experiments due to its ease of
programmability and wide availability. Each Jetson TX2
incorporates a Pascal GPU with 256 CUDA cores and 8 GB
memory shared by the GPU and a hexa-core ARMv8 64-bit
CPU complex. The detailed specification is provided in Table II.
The embedded cluster is implemented by connecting multiple
TX2’s via a router with up to 1 Gbits/sec transmission rate.
Jetson TX2 is an excellent option for embedded systems, as its
power consumption is only 7.5 Watts on average, significantly
lower than that of commercial desktop or server grade GPUs.
Although Jetson TX2 is remarkable for a number of embedded

70 45

69 36

31.75

=) o 6781 6781 — 28.16 28.22 3
o g)
£ £ 27 22,04 §'
3 67 o 17.59 22
8 €5.24 4502 8 18 g
3 66 p520 5549 G 1067 574 ® 1
< 65 9

64 0

Single 141 142 143 1+4 1+5 146 Single 1+1 142 143 1+4 145 1+6 Single 1+1 142 143 144 145 146

Configurations

Configurations

Configurations

Fig. 6. Performance comparison of mIoU, fps, and Speedup for different configurations.

system applications, however, it still fails to meet both the
accuracy and real-time requirements in most semantic video
segmentation tasks (please refer to the first four rows of
Table III for the quantitative results and Section IV-B for
a more detailed discussion). In order to validate the proposed
distributed methodology on different cluster configurations, we
employ up to seven TX2’s in our experiments. Please note that
contemporary embedded DCNN accelerators or ePEs other than
NVIDIA Jetson TX2 can also fit in the proposed framework.

b) Dataset: We perform our experiments on the
Cityscapes dataset [26], which is composed of urban street
scenes from 50 different cities. There are totally 2,975 training
images and 500 validation images in the dataset. The dataset
contains pixel-level annotations with 19 classes. The annotation

is provided on the 20" frame of each 30-frame video snippet.

We evaluate our framework on each Cityscapes validation
snippet from the 1°¢ frame to the 20" frame. We set the 1°¢
frame as our initial key frame and measure mIoU on the
annotated 20*" frame. All of the experiments are conducted
on image frames of a fixed dimension of 512 x 1,024 pixels.

B. Comparison of the Quantitative Results

Table III presents and compares the quantitative results of the
proposed methodology with the baseline approaches discussed
in Section II for a number of system configurations. The first
four rows correspond to the baseline approaches measured on a
single TX2, while the remaining seven rows correspond to our
methodology. The results of ENet, ERFNet, and ESPNet are
obtained from [12]. The rest of the results are directly measured
on our embedded systems. Please note that the resolutions of
the input frames are the same (i.e., 512 x 1,024 pixels) for
all of the configurations listed in Table III. Three quantities
are compared in our experiments: mIoU, fps, and the speedup
ratio. The baseline entry SegPath denotes that P4 is used for
processing every input frame region. The entry Single serves
as the reference entry corresponding to the case where the
default DVSNet [17] is performed on a single ePE. Each of the
rest entries represents the configuration of one master ePE and
the corresponding number of slave ePEs. For example, /+3
means that one master ePE and three slave ePEs are used. The
speedup ratio Speedup is the ratio of the entry’s fps with respect
to that of Single. The threshold 7 is set to 15 in all cases,

which is the maximum interval for the master ePE to update a
slave ePE’s local key buffer, as discussed in Section III-C.

From Table III, it is observed that for the Single reference
entry, the values of mIoU and fps are 67.81% and 10.67,
respectively. Although the mIoU accuracy of Single is slightly
less than that of SegPath, the former’s fps is 7.02x as compared
to that of the latter. When the Single reference entry is compared
with the other baselines, its fps is 1.16x, 2.96x, and 1.19x
as high as those of ENet, ERFNet, and ESPNet, respectively.
The mIoU accuracy of Single is 0.93x, 1.16x, 1.00x, and
1.12x as compared with those of SegPath, ENet, ERFNet, and
ESPNet, respectively, indicating that the accuracy of Single is
comparable to the baseline methods. The speedup of Single
mainly results from the advantages offered by DVSNet [17].

Nonetheless, an fps of 10.67 is still far from satisfactory
for real-time needs, which typically require an fps up to
20 or even more. To demonstrate the effectiveness of the
proposed distributed framework, a number of configurations
with multiple slave ePEs are evaluated in our experiments.
Table III and Fig. 6 compare the performance of different
configurations. It can be seen from Fig. 6 that for most
configurations, increasing the number of slave ePEs tend to
deliver higher fps, with only a slight decrease in mIoU. Table 3
shows that the proposed framework achieves 1.65x, 2.07x,
2.64x, and 2.98x Speedup for configurations /+2, 1+3, 1+4,
and /435, respectively. Configurations /+/ and /+6 do not
follow the above increasing trend due to different reasons. For
1+1, the fps is merely 8.74, which is even slower than that
of Single. The decreased performance in fps is primarily caused
by the data transmission overhead between the master ePE
and the slave ePE. In other words, configuration /+/ does not
provide sufficient parallelism for the proposed framework to
outweigh the communication latency between the ePEs. For
1+6, the fps drops from 31.75 to 28.22, as compared with
that of 7/+5. The decrease in fps is due to the fact that more
slave ePEs may result in higher chances for the frame regions
allocated to the slave ePEs to deviate from the key frame
regions. As a result, the slave PEs tend to execute Ps., more
often, leading to an overall performance drop in fps. Based
on the above observations, we conclude that configuration
1+5 is the most ideal option in this experiment. Please note
that different specifications of Ps.g, Priow, 7, and system
implementations may lead to different optimal configurations.

110 Idle Other 110 Idle Seg M Flow
Latent Analysis (Master) Latent Analysis (Slave)

600 600

13.6 Segpath| 0.66 sec/frame
_ 0.08 sec/frame
450 450
12.8

300 13.3
127
1729 132 131 1315
1031 766
150 666 454 521 10 %2 316 401

Second (sec)
Second (sec)

998 1001 1065 1044 1083 109.6 824 845 869 863 874 879

141 142 143 1+4 145 146 1+1 142 143 1+4 145 146

Configurations Configurations

Fig. 7. Latency analysis for the master ePE and the slave ePE.

Table III and Fig. 6 also reveal that the mIoU accuracy
do not decrease significantly as the number of the slave ePEs
increases. Even under configurations /+5 and /+6, the mIoU
accuracies only decrease by 2.59% and 2.32% as compared
with that of Single, respectively. The decreases in mloU are
due to the fact that more slave ePEs may increase the average
timestep interval between the current frame regions and the
key frame regions, potentially decreasing the mloU accuracy

of Pfioy of the slave PEs, as described in Section III-A.

The above observations validate that the proposed distributed
framework does lead to performance enhancement in terms
of fps and Speedup, with little degradation in mIoU. The
results also justify the motivation for performing semantic
video segmentation tasks on embedded clusters, especially

when a single ePE is unable to deliver sufficient performance.

C. Latency Analysis for the Master and Slave ePEs

To further examine the proposed methodology, we conduct
a latency analysis and plot breakdowns for the master ePE
and the slave ePE under different cluster configurations. The
breakdowns of the master ePE and the slave ePE are presented

on the left-hand side and right-hand side of Fig. 7, respectively.

The components of the breakdowns are different, as we intend
to highlight the differences in functionality between the master
ePE and the slave ePEs. The breakdowns of the master ePE
focus on the time cost in data transmission (denoted as I/0) and
the time spent on waiting for available slave ePEs (denoted as
Idle), as the master ePE is mainly responsible for pre-processing
the input frames as well as transmitting and aggregating data
to/from slave ePEs. On the other hand, the breakdowns of the
slave ePE focus on the time cost in data transmission, the time
spent on waiting the master ePE for frame region allocation,
as well as the time spent on the two execution paths (i.e., Pseqg
and Pf;o,). The numbers in Fig. 7 are derived by summing
the latencies of the distinct components spent on the frames
of the entire validation set.

From Fig. 7, it is observed that for the master ePE, the /O
time spent on data transmission (mainly contributed by frame
region allocation) is similar under different configurations. This
is because the number of input frame regions is identical for all
of the configurations. In addition, these frame regions can only
be transmitted one by one by the master ePE, no matter how

many slave ePEs are employed in the system. On the other
hand, the Idle time of the master ePE decreases drastically as
the number of slave ePEs increases. It can be seen that under
configuration /+1/, the master ePE wastes most of its time
waiting for the sole slave ePE to finish its tasks. The ratio of
the Idle time to the I/0 time is about 4.5x. With more slave
ePEs, however, the average latency that the master ePE has to
wait for an available slave ePE becomes significantly shorter,
as it is more likely for the master ePE to acquire an idle slave
ePE right after a frame region transmission. The Idle/I/O ratios
of configurations /+5 and /+/ are only about one-tenth of
that of configuration /+1. The above observations suggest that
more slave ePEs tend to improve the efficiency of the master
ePE, and partially validate the trend of fps plotted in Fig. 6.
For the slave ePE, the I/O time spent on data transmission
is roughly the same for different configurations. The reason is
similar to that of the master ePE. It is also observed that as
the number of slave ePEs increases, the total time of each ePE
spent on the execution paths decreases. This is because the
number of input frames allocated to each slave PE decreases.
For both of the breakdowns, the total amount of time also
decreases as the number of slave ePEs increases. The above
evidences suggest that the proposed distributed framework does
improve the throughput and efficiency of embedded clusters
for performing semantic video segmentation tasks, especially
when multiple slave ePEs are incorporated into the system.

V. CONCLUSIONS

In this paper, we presented a framework for performing
semantic video segmentation tasks on an embedded cluster. We
embraced the advantages provided by DVSNet, and developed
a distributed scheme for allocating different frame regions
to different PEs. The PEs in the framework are coordinated
in a master-slave hierarchy, and are regulated by a global
and local key management scheme. Our experimental results
demonstrated that the proposed methodology does lead to
enhanced performance in terms of fps and Speedup, with little
degradation in mIoU. The proposed framework is flexible in
its implementations, and is especially suitable for embedded
systems with limited computational resources such as self-
driving cars, drones, or autonomous machines.

ACKNOWLEDGMENT

This work was supported by the Ministry of Science and
Technology (MOST) in Taiwan under grant nos. MOST 108-
2636-E-007-010 (Young Scholar Fellowship Program) and
MOST 108-2634-F-007-002. H.-K. Yang acknowledges the
student fellowship support from Novatek Microelectronics
Corporation. T.-J. Fu, P-H. Chiang, and C.-Y. Lee acknowledge
the financial support from MediaTek Inc. The authors acknowl-
edge the donation of NVIDIA Jetson TX2’s from NVIDIA
Corporation and NVIDIA Al Technology Center (NVAITC)
used in this research.

(1]

[2]

[3]

[4]
[3]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” arXiv:1707.07012, Aug.
2017.

K. He et al., “Deep residual learning for image recognition,” in Proc.
IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp.
770-778, Jun. 2016.

S. Ren et al., “Faster R-CNN: Towards real-time object detection with
region proposal networks,” IEEE Trans. Pattern analysis and Machine
Intelligence (TPAMI), pp. 1137-1149, Apr. 2017.

W. Liu et al., “SSD: Single shot multibox detector,” in Proc. European
Conf. Computer Vision (ECCV), pp. 21-37, Sep. 2016.

L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for semantic image
segmentation,” arXiv:1802.02611, Mar. 2018.

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), pp. 6230-6239, Jul. 2017.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Semantic image segmentation with deep convolutional nets and fully
connected CRFs,” arXiv:1412.7062, Jun. 2016.

L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation,” arXiv:1706.05587, Jun.
2017.

M. Siam et al., “RTSeg: Real-time semantic segmentation comparative
study,” arXiv:1803.02758, Aug. 2018.

A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “ENet: A Deep
Neural Network Architecture for Real-Time Semantic Segmentation,
arXiv:1606.02147, Jun. 2016.

E. Romera, J. M. Alvarez, L. M. Bergasa and R. Arroyo, “ERFNet:
Efficient Residual Factorized ConvNet for Real-Time Semantic Segmen-
tation,” IEEE Trans. Intelligent Transportation Systems, pp. 263-272,
Jan. 2018.

J. S. Mehta, M. Rastegari, A. Caspi, L. G. Shapiro and H. Hajishirzi,
“ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic
Segmentation,” in Proc. European Conference on Computer Vision
(ECCV),” pp. 561-580, Oct. 2018.

J. Dean et al., “Large scale distributed deep networks,” in Proc. Advances
in Neural Information Processing Systems (NeurIPS), pp. 1232-1240,
Dec. 2012.

A. Dundar, J. Jin, B. Martini, and E. Culurciello, “Embedded streaming
deep neural networks accelerator with applications,” IEEE Trans. Neural
Networks and Learning Systems, pp. 1572-1583, Jun. 2017.

P. G. Lépez et al., “Edge-centric computing: Vision and challenges,
in Computer Communication Review, pp. 23-42, Oct. 2015.

M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov and, L.-C.
Chen, “Inverted residuals and linear bottlenecks: Mobile networks
for classification, detection and segmentation,”’arXiv:1801.04381, Feb.
2018.

Y.-S. Xu, T.-J. Fu, H-K. Yang, and C.-Y. Lee, “Dynamic video
segmentation network,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), pp. 6556-6565, Jun. 2018.

D. Maturana, S. Arora, and S. Scherer, “Looking forward: A semantic
mapping system for scouting with micro-aerial vehicles,” in IEEE/RSJ
Int. Conf. Intelligent Robots and Systems (IROS), pp. 6691-6698, Sep.
2017.

I. Baek et al., “Real-time detection, tracking, and classification
of moving and stationary objects using multiple fisheye images,”
arXiv:1803.06077, Apr. 2018.

T. Amert et al., “GPU scheduling on the NVIDIA TX2: hidden details
revealed,” IEEE Real-Time Systems Symposium (RTSS), pp. 104-115,
Feb. 2018.

B. K. P. Horn and B. G. Schunck, “Determining optical flow,” J. Artificial
intelligence, pp. 185-203, Aug. 1981.

A. Dosovitskiy et al.,“FlowNet: Learning optical flow with convolutional
networks,” in Proc. IEEE Conf. International Conference on Computer
Vision (ICCV), pp. 2758-2766, Apr. 2015.

E. Ilg et al., “FlowNet 2.0: Evolution of optical flow estimation with
deep networks,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), pp. 1647-1655, Nov. 2017.

P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid., “DeepFlow:
Large displacement optical flow with deep matching,” in Proc. IEEE

>

>

[25]

[26]

Conf. Computer Vision and Pattern Recognition (CVPR), pp. 1385-1392,
Dec. 2013.

T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Proc. European Conf. Computer Vision (ECCV), pp. 740-755, Sep.
2014.

M. Cordts et al., “The Cityscapes dataset for semantic urban scene
understanding,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), pp. 3213-3223, Jun. 2016.

