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Abstract. Vision-and-Language Navigation (VLN) is a task where agents
must decide how to move through a 3D environment to reach a goal by
grounding natural language instructions to the visual surroundings. One
of the problems of the VLN task is data scarcity since it is difficult to
collect enough navigation paths with human-annotated instructions for
interactive environments. In this paper, we explore the use of counter-
factual thinking as a human-inspired data augmentation method that
results in robust models. Counterfactual thinking is a concept that de-
scribes the human propensity to create possible alternatives to life events
that have already occurred. We propose an adversarial-driven counter-
factual reasoning model that can consider effective conditions instead of
low-quality augmented data. In particular, we present a model-agnostic
adversarial path sampler (APS) that learns to sample challenging paths
that force the navigator to improve based on the navigation perfor-
mance. APS also serves to do pre-exploration of unseen environments
to strengthen the model’s ability to generalize. We evaluate the influ-
ence of APS on the performance of different VLN baseline models using
the room-to-room dataset (R2R). The results show that the adversar-
ial training process with our proposed APS benefits VLN models under
both seen and unseen environments. And the pre-exploration process can
further gain additional improvements under unseen environments.

1 Introduction

Vision-and-language navigation (VLN) [3,8] is a complex task that requires an
agent to understand natural language, encode visual information from the sur-
rounding environment, and associate critical visual features of the scene and
appropriate actions with the instructions to achieve a specified goal (usually to
move through a 3D environment to a target destination).

To accomplish the VLN task, the agent learns to align linguistic semantics
and visual understanding and also make sense of dynamic changes in vision-
and-language interactions. One of the primary challenges of the VLN task for
artificial agents is data scarcity; for instance, while there are more than 200K
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Fig. 1. The comparison between randomly-sampled (rand) and APS-sampled (aps)
under validation-seen set for Seq2Seq over different ratios of augmented path used.

possible paths in the Room-to-Room (R2R) dataset [3], the R2R training data
comprises only 14K sampled paths. This scarcity of data makes learning the
optimal match between vision and language within the interactive environments
quite challenging.

Meanwhile, humans often lack extensive experience with joint access to visual
experience and accompanying language instructions for navigating novel or un-
familiar environments, yet the human mind can navigate environments despite
this data scarcity by incorporating mechanisms such as counterfactual reasoning
[29] and self-recovered missing information. For example, if a human follows an
instruction to “turn right” and they see a door in front of them, they can also
consider what they may have encountered had they turned left instead. Or, if we
stop in front of the dining table instead of walking away from it, what should the
instruction be? The premise, then, is that counterfactual reasoning can improve
performance in a VLN task through exploration and consideration of alternative
actions that the agent did not actually make. This may allow the agent to op-
erate in data-scarce scenarios by bootstrapping familiarity of environments and
the links between instructions and multiple action policy options.

Counterfactual thinking has been used to increase the robustness of models
for various tasks [24,12]. However, no explicitly counterfactual models have been
applied to the VLN task specifically. Speaker-Follower [11], which applies a back-
translated speaker model to reconstruct the instructions for randomly-sampled
paths as augmented training examples, is probably the VLN model that comes
closest to instantiating counterfactual thinking.

While the use of augmented training examples by the Speaker-Follower agent
resembles a counterfactual process, the random sampling method is too arbitrary.
Fig. 1 reports the performance of the model trained with randomly-sampled
augmented data (the line in a light color) over different ratios of the augmented
path used. It shows that the success rate stops increasing once augmented paths
account for 60% or more of the training data [19]. Since those paths are all
randomly sampled, it can limit the benefit of counterfactual thinking to data
augmentation.

In this paper, we propose the use of adversarial-driven counterfactual think-
ing where the model learns to consider effective counterfactual conditions instead
of sampling ample but uninformative data. We introduce a model-agnostic ad-
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versarial path sampler (APS) that learns how to generate augmented paths for
training examples that are challenging, and thus effective, for the target naviga-
tion model. During the adversarial training process, the navigator is trying to
accomplish augmented paths from APS and thus optimized for a better navi-
gation policy, while the APS aims at producing increasingly challenging paths,
which are therefore more effective than randomly-sampled paths.

Moreover, empowered by APS, the model can adapt to unseen environments
in a practical setting—environment-based pre-exploration, where when deployed
to a new environment, the robot can first pre-explore and get familiar with it,
and then perform natural language guided tasks within this environment.

Experimental results on the R2R dataset show that the proposed APS can be
integrated into a diverse collection of VLN models, improving their performance
under both seen and unseen environments. In summary, our contributions are
four-fold:

– We integrate counterfactual thinking into the vision-and-language naviga-
tion task, and propose the adversarial path sampler (APS) to progressively
sample challenging and effective paths to improve the navigation policy.

– The proposed APS method is model-agnostic and can be easily integrated
into various navigation models.

– Extensive experiments on the R2R dataset validate that the augmented
paths generated by APS are not only useful in seen environments but also
capable of generalizing the navigation policy better in unseen environments.

– We demonstrate that APS can also be used to adapt the navigation policy
to unseen environments under environment-based pre-exploration.

2 Related Work

Vision-and-Language Navigation Navigation in 3D environments based on
natural language instruction has recently been investigated by many studies
[3,8,21,22,26,20,33,25,11,32,31,16]. For vision-and-language navigation (VLN),
fine-grained human-written instructions are provided as guidance to navigate a
robot in indoor environments. But data scarcity is a critical issue in VLN due
to the high cost of data collection.

In order to augment more data for training, the Speaker-Follower model [11]
applies a back-translated speaker model to generate instructions for randomly-
sampled paths. In spite of obtaining some improvements from those extra paths,
a recent study [19] shows that only a limited number of those augmented paths
are useful and after using 60% of the augmented data, the improvement dimin-
ishes with additional augmented data. In this paper, we present a model-agnostic
adversarial path sampler that progressively produces more challenging paths via
an adversarial learning process with the navigator, therefore forcing the naviga-
tion policy to be improved as the augmented data grows.

Counterfactual Thinking Counterfactual thinking is a concept that describes
the human propensity to create possible alternatives to life events that have al-
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ready occurred. Humans routinely ask questions such as: “What if ...?” or “If
there is only ...” to consider the outcomes of different scenarios and apply inferen-
tial reasoning to the process. In the field of data science, counterfactual thinking
has been used to make trained models explainable and more robust [24,12,14].
Furthermore, counterfactual thinking is also applied to augment training targets
[37,9,6]. Although previous studies have shown some improvements over different
tasks, they all implement counterfactual thinking arbitrarily without a selection
process to sample counterfactual data that might optimize learning. This can
limit the effectiveness of counterfactual thinking. In this paper, we combine the
adversarial training with counterfactual conditions to guide models that might
lead to robust learning. In this way, we can maximize the benefit of counterfac-
tual thinking.

Adversarial Training Adversarial training refers to the process by which two
models try to detrimentally influence each other’s performance and as a result,
both models improve by competing against each other. Adversarial training has
been successfully used to guide the target during model training [13,35,10,27,18,1].
Apart from leading the training target, adversarial training is also applied to
data augmentation [5,36]. While previous studies just generate large amounts
of augmented examples using a fixed pre-trained generator. In this paper, the
generator is updated along with the target model and serves as a path sampler
which samples challenging paths for effective data augmentation.

Pre-Exploration under Unseen Environments Pre-exploration under un-
seen environments is a popular method to bridge the gap between seen and
unseen environments. Speaker-Follower [11] adopts a state-factored beam search
for several candidate paths and then selects the best one. RCM [32] introduces
self-imitation learning (SIL) that actively optimized the navigation model to
maximize the cross-matching score between the generated path and the original
instruction. Nevertheless, beam search requires multiple runs for each inference,
and SIL utilizes the original instructions in the unseen environments for op-
timization. EnvDrop [31] conducts pre-exploration by sampling shortest paths
from unseen environments and augments them with back-translation, which how-
ever utilizes the meta-information of unseen environments (e.g., the shortest path
planner that the robot is not supposed to use).

3 Methodology

3.1 Background

Visual-and-Language Navigation (VLN) At each time step t, the environ-
ment presents the image scene st. After stepping an action at, the environment
will transfer to next image scene st+1:

st+1 = Environment(st, at). (1)
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Fig. 2. The learning framework of our
adversarial path sampler (APS), where
Speaker denotes the back-translated
speaker model and NAV denotes the
navigation model.

Fig. 3. The architecture of the adversarial
path sampler (APS).

To carry out a VLN task, the navigation model steps a serious of actions {at}Tt=1

to achieve the final goal described in the instruction. Though previous studies
propose different architectures of navigation model (NAV), in general, NAV is a
recurrent action selector based on the visual feature of the image scene, naviga-
tion instruction, and previous history:

ft = VisualFeature(st),

at = softmax(NAV(ft, I, ht)),
(2)

where ft is the visual feature of the image scene st at time step t, I is the
navigation instruction, ht represents the previous history of image scenes, and
at is the probability of each action to step at time step t. With at, we can decide
which action to step based on greedy decoding (step the action with the highest
probability).

In this work, we experiment under navigator with 3 different architectures,
Seq2Seq [3], Speaker-Follower [11], and RCM [32].

Back-Translated Speaker Model Introduced in Speaker-Follower [11], the
back-translated speaker model (Speaker) generates the instruction of a naviga-
tion path:

I = Speaker({(f1, a1), (f2, a2), ..., (fL, aL)}), (3)

where ft is the visual feature of the image scene, at is the action taken at
time step t, L represents the length of the navigation path, and I is the gener-
ated instruction. Speaker is trained with pairs of navigation paths and human-
annotated instructions in the training data. With Speaker, we can sample various
paths in the environments and augment their instructions.

3.2 Overview

The overall learning framework of our model-agnostic adversarial path sampler
(APS) is illustrated in Fig. 2. At first, APS samples batch of paths P and we
adopt the Speaker [11] to obtain the reconstructed instructions I. With the pairs
of (P , I), we obtain the navigation loss LNAV. NAV minimizes LNAV to improve
navigation performance. While APS learns to sample paths that NAV can not
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perform so well by maximizing LNAV. Hence, there is an adversarial situation for
LNAV between NAV and APS, where APS aims at sampling challenging paths
and NAV tries to solve the navigation tasks from APS.

By the above adversarial training process, we collect all of the (P , I) sampled
from APS to compose the adversarial augmented data which can be more helpful
to NAV than randomly-sampled one. Both Speaker and NAV are pre-trained us-
ing the original training set and Speaker keeps fixed during adversarial training.
We collect all (P , I) sampled from APS as APS-sampled augmented path and
further train NAV. More detail can be seen in Sec. 3.4.

3.3 Architecture of APS

As shown in Fig. 3, the proposed APS is a recurrent action sampler πAPS which
samples series of actions {at}Tt=1 (with the scene images {ft}Tt=1 presented from
the environment) and combines as the path output, where ft means the vi-
sual feature (e.g., extracted from the convolutional neural networks). For the
panoramic image scene, ft,j represents the visual feature of the image patch at
viewpoint j at time step t.

At each time step t, the history of previous visual feature and at−1 is encoded
as ht by a long short-term memory (LSTM) [17] encoder:

ht = LSTM([vt, at−1], ht−1), (4)

where at−1 is the action taken at previous step and vt is the weighted sum of
visual feature of each image path for the panoramic image scene. vt is calculated
using the attention [7] between the history ht−1 and the image patches {ft,j}mj=1:

vt = Attention(ht−1, {ft,j}mj=1)

=
∑
j

softmax(ht−1Wh(ft,jWf )T )ft,j ,
(5)

where Wh and Wf are learnable projection matrics. The above equation of vt is
for panoramic scene with m viewpoints. APS also supports the navigator which
uses visuomotor view as input (e.g., Seq2Seq [3]) and the single visual feature ft
is seen as vt directly.

Finally, APS decides which action to step based on the history ht and action
embedding u:

at = softmax(htWc(ukW
T
u )), (6)

where uk is the action embedding of the k-th navigable direction. Wc and Wu

are learnable projection matrics.

3.4 Adversarial Training of APS

After each unrolling of APS, we comprise the navigation history {at}Tt=1 and
{ft,j}mj=1 to obtain the path P . To be consistent with the original training data
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Algorithm 1 Training Process of Adversarial Path Sampler

1: NAV: the target navigation model
2: Speaker: the back-translated instruction model
3: APS: the adversarial path sampler
4: augaps: collected APS-sampled augmented data
5:
6: Pre-train NAV with original training set
7: Pre-train Speaker with original navigation path
8: Initialize APS
9: augaps ← ∅

10:
11: while DO APS do
12: P = {(f1, a1), (f2, a2), ..., (fL, aL)} ← APS samples
13: I ← back-translated by Speaker with P
14: LNAV ← student-forcing loss of NAV using (P , I)
15:
16: Update NAV by minimizing LNAV

17: Update APS by maximizing LNAV using Policy Gradient
18: augaps ← augaps ∪ (P , I)
19: end while
20:
21: Train NAV with augaps

22: Fine-tune NAV with original training set

whose navigation paths are all shortest paths [3], we transform the sampled
paths by APS into shortest paths1 (same start and end nodes as in the sampled
paths). Then we employ the Speaker model [11] to produce one instruction I
for each sampled path P , and eventually obtain a set of new augmented pairs
(P , I). We train the navigation model (NAV) with (P , I) using student-forcing
[3]. The training loss (LNAV) can be seen as an indicator of NAV’s performance
under (P , I): the higher LNAV is, the worse NAV performs. Hence, in order to
create increasingly challenging paths to improve the navigation policy, we define
the loss function LAPS of APS as:

LAPS = −Ep(P;πAPS)LNAV. (7)

Since the path sampling process is not differentiable, we adopt policy gradient
[30] and view LNAV as the reward R to optimize the APS objective. According

1 Note that transforming the sampled paths into shortest paths can only be done under
seen environments. For pre-exploration under unseen environments, we directly use
the sampled paths because the shortest path planner should not be exploited in
unseen environments.
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Fig. 4. The optimization flow of environment-based pre-exploration under unseen en-
vironments. APS samples paths from the unseen environment to optimize NAV and
make it more adaptive. Then, NAV runs each instruction in a single turn.

to the REINFORCE algorithm [34], the gradient is computed as following:

∇πAPSLAPS ≈ −
T∑
t=1

[∇πAPS log p(at|a1:t−1;πAPS)R]

≈ −
T∑
t=1

[∇πAPS
log p(at|a1:t−1;πAPS)(R− b)],

(8)

where b is the baseline estimation to reduce the variance and we treat b as the
mean of all previous losses. Note that APS is model-agnostic and can be easily
integrated into different navigation models, since it only considers the training
loss from a navigation model regardless of its model architecture.

Algorithm 1 illustrates the training process of APS. APS aims at maximizing
the navigation loss LNAV of NAV to create more challenging paths, while NAV
tries to minimize LNAV to do better navigation:

min
NAV

max
APS
LNAV. (9)

After collecting the challenging paths augmented by APS, we train NAV on them
and finally fine-tune NAV with the original training set. The detailed analysis
of APS-sampled augmented data is shown in Sec. 4.3.

3.5 Environment-based Pre-Exploration

Pre-exploration is a technique that adapts the navigation model to unseen en-
vironments. The navigator can explore the unfamiliar environment first and
increase the chance to carry out the navigation instructions under unseen en-
vironments. For previous pre-exploration methods like beam search [11] or self-
imitation learning (SIL) [32], they are instruction-based which optimizes for each
instruction. This will make the navigation path excessive long since it first runs
many different paths and then selects the possible best one.

In the real world, when we deploy a robot into a new environment, it might
pre-explore and get familiar with the environment, and then efficiently execute
the tasks following natural language instructions within this environment. So
unlike previous approaches [32,31] that either optimize the given instructions or
assume access to all the unseen environments at once, we propose to use our
APS method to do the environment-based pre-exploration where the agent pre-
explore an environment only for the tasks within the same environment with no
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Test (VLN Challenge Leaderboard)

Model NE ↓ OSR ↑ SR ↑ SPL ↑

Seq2Seq [3] 7.9 26.6 20.4 18.0
+ augrand 7.8 26.2 21.0 18.8
+ augaps 7.5 30.1 22.5 19.3

+ augaps+pre-exploration 6.7 29.4 23.2 20.8

Speaker-Follower [11] 7.0 41.2 30.9 24.0
+ augrand 6.6 43.4 34.8 29.2
+ augaps 6.5 44.2 36.1 28.8

+ augaps+pre-exploration 5.9 46.4 37.6 32.4

RCM [32] 6.7 43.5 35.9 33.1
+ augrand 5.9 52.4 44.5 40.8
+ augaps 5.8 53.9 45.1 40.9

+ augaps+pre-exploration 5.5 55.6 45.9 40.9

Table 1. R2R results for Seq2Seq, Speaker-Follower, and RCM under testing set.
Models are trained without augmented data, with randomly-sampled augmented path
(augrand), with APS-sampled augmented path (augaps), and under pre-exploration in
unseen environments. Note that those results are run in single turn and with greedy
action decoding.

prior knowledge of it. Under an unseen environment, we adopt APS to sample
multiple paths (P ′) and generate the instructions (I ′) of the sampled paths2 with
the Speaker model [11]. We then use (P ′, I ′) to optimize NAV to adapt to the
unseen environment as illustrated in Fig. 4. Note that during pre-exploration,
we only optimize NAV and let APS fixed3. We also present a detailed analysis
of our proposed environment-based pre-exploration method in Sec. 4.3.

4 Experiments

4.1 Experimental Setup

R2R Dataset We evaluate the proposed method on the Room-to-Room (R2R)
dataset [3] for vision-and-language navigation. R2R is built upon the Matter-
port3D [4], which contains 90 different environments that are split into 61 for
training and validation-seen, 11 for validation-unseen, and 18 for testing sets.
There are 7,189 paths and each path has 3 human-written instructions. The
validation-seen set shares the same environments with the training set. In con-
trast, both the validation-unseen and the testing sets contain distinct environ-
ments that do not appear during training.

2 Note that the shortest-path information is not used during pre-exploration.
3 We have tried to update APS simultaneously with NAV during pre-exploration, but

it turns out that under a previous unseen environment without any regularization
of human-annotated paths, APS tends to sample too difficult paths to accomplish,
e.g., back and forth or cycles. However, those paths will not improve NAV and may
even hurt the performance. To avoid this kind of dilemma, we keep APS fixed under
the pre-exploration.
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Val-Seen Val-Unseen

Model NE ↓ OSR ↑ SR ↑ SPL ↑ NE ↓ OSR ↑ SR ↑ SPL ↑

Seq2Seq [3] 6.0 51.7 39.4 33.8 7.8 27.7 22.1 19.1
+ augrand 5.3 58.1 43.7 37.2 7.7 28.9 22.6 19.9
+ augaps 5.0 60.8 48.2 40.1 7.1 32.7 24.2 20.4

+ augaps+pre-exploration - 6.6 37.8 27.0 24.6

Speaker-Follower [11] 5.0 61.6 51.7 44.4 6.9 40.7 29.9 21.0
+ augrand 3.7 74.2 66.4 59.8 6.6 46.6 36.1 28.8
+ augaps 3.3 74.9 68.2 62.5 6.1 46.7 38.8 32.1

+ augaps+pre-exploration - 5.2 49.1 42.0 35.7

RCM [32] 5.7 53.8 47.0 44.3 6.8 43.0 35.0 31.4
+ augrand 4.1 66.9 61.9 58.6 5.7 52.4 45.6 41.8
+ augaps 3.9 69.3 63.2 59.5 5.4 56.6 47.7 42.8

+ augaps+pre-exploration - 5.3 56.2 48.0 42.8

Table 2. R2R results for Seq2Seq, Speaker-Follower, and RCM under validation-
seen and validation-unseen sets. Models are trained without augmented data, with
randomly-sampled augmented path (augrand), with APS-sampled augmented path
(augaps), and under pre-exploration in unseen environments. Note that those results
are run in single turn and with greedy action decoding.

Evaluation Metrics To compare with the existing methods, we report the
same used evaluation metrics: Navigation Error (NE), Oracle Success Rate (OSR),
Success Rate (SR), and Success Rate weighted by Path Length (SPL). NE is the
distance between the agent’s final position and goal location. OSR is the success
rate at the closest point to the goal that the agent has visited. SR is calculated
as the percentage of the final position within 3m from the goal location. SPL,
defined in [2], is the success rate weighted by path length which considers both
effectiveness and efficiency.

Baselines We experiment with the effectiveness of the model-agnostic APS on
3 kinds of baselines:

– Seq2Seq [3], the attention-based seq2seq model that is trained with student
forcing (or imitation learning) under the visuomotor view and action space;

– Speaker-Follower [11], the compositional model that is trained with student
forcing under the panoramic view and action space;

– RCM [32], the model that integrates cross-modal matching loss, and is
trained using reinforcement learning under the panoramic view and action
space.

In the following sections, we use the notations as:

– augrand: the randomly-sampled augmented path;
– augaps: the APS-sampled augmented path;
– modelrand: the model trained with augrand;
– modelaps: the model trained with augaps.

For example, Speaker-Followeraps is the Speaker-Follower model trained with the
APS-sampled augmented path.
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Fig. 5. The comparison between randomly-sampled and APS-sampled under
validation-seen and validation-unseen sets for Seq2Seq and Speaker-Follower over dif-
ferent ratios of augmented path used.

For each baseline, we report the results of the model trained without any
augmented data, trained with augrand, and trained with augaps. For the unseen
environments, we also report the results under the pre-exploration.

Implementation Details To follow the previous studies [3,11,32], we adopt
ResNet-152 [15] to extract visual features (2048d) for all scene images without
fine-tuning; for the navigation instructions, the pre-trained GloVe embeddings
[28] are used for initialization and then fine-tuned with the model training. For
baseline models, we apply the same batch size 100, LSTM with 512 hidden units,
learning rate 1e-4, RL learning rate 1e-5, and dropout rate 0.5. For our proposed
APS, the hidden unit of LSTM is also 512, the action embedding size is 128,
and the learning rate is 3e-5. We adopt the learning rate 1e-5 under the pre-
exploration for the unseen environments. All models are optimized via Adam
optimizer [23] with weight decay 5e-4.

For augrand, we use the same 17K paths as Speaker-Follower [11]. To com-
pare fairly, APS also adversarially samples the same amounts of paths for data
augmentation. The navigation models are first trained using augmented data for
50K iterations and then fine-tuned with original human-written instructions for
20K iterations.

4.2 Quantitative Results

Table. 1 and 2 present the R2R results for Seq2Seq [3], Speaker-Follower [11], and
RCM [32] under validation-seen, validation-unseen, and testing sets. All models
are trained without augmented data, with augrand, and with augaps. First, we
can observe that under validation-seen set, Seq2Seqaps outperforms Seq2Seqrand

on all evaluation metrics, e.g., 4.5% absolute improvement on Sucess Rate and
2.9% on SPL. Similar trends can be found for Speaker-Follower and RCM where
models trained with APS-sampled paths comprehensively surpass models trained
with randomly-sampled paths. Since APS can sample increasingly challenging
and custom-made paths for the navigator, APS-sampled paths are more effective
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As Testing Set

Model train augrand augaps

Seq2Seq 71.3 20.3 17.7
Seq2Seqrand 81.4 26.4 23.8
Seq2Seqaps 78.5 27.3 24.8

As Testing Set

Model augrand augaps

RCMrand 33.3 31.1
RCMaps 38.9 37.9

Fig. 6. The success rate under training, randomly-sampled augmented (augrand), and
APS-sampled augmented (augaps) sets for Seq2Seq and RCM.

than randomly-sample paths and bring in larger improvements on all metrics for
all navigation models.

For the unseen environments, all models trained with APS consistently out-
perform modelrand with 1.6%-2.7% success rate under validation-unseen set and
0.6%-1.5% under testing set. The improvement shows that APS-sampled paths
are not only helpful under the seen environments, but also strengthens the
model’s generalizability under the unseen environments. The results under validation-
seen, validation-unseen, and testing sets demonstrate that our proposed APS can
further improve the baseline models in all terms of visuomotor view, panoramic
view, imitation learning, and reinforcement learning.

And under the pre-exploration, all models gain further improvement, espe-
cially on SPL for Seq2Seq and Speaker-Follower due to the prior exploration
experience which can shorten the navigation path length. For RCM, they adopt
reinforcement learning which may increase the path length but still obtain im-
provement on success rate.

4.3 Ablation Study

Random Path Sampling vs Adversarial Path Sampling To investigate
the advantage of APS, we perform a detailed comparison between randomly-
sampled and APS-sampled data. Fig. 5 presents the R2R success rate over dif-
ferent ratios of augmented data used for Seq2Seq and Speaker-Follower. The
trend line in light color shows that Seq2Seqrand cannot gain additional improve-
ment when using more than 60% augmented data. However, for our proposed
APS, the sampled augmented path can keep benefiting the model when more
data used and achieve 4.5% and 1.6% improvement under validation-seen and
validation-unseen sets, respectively. Since augrand is sampled in advance, the help
to the model is limited. While on the other hand, our proposed APS adversarially
learns to sample challenging paths that force the navigator to keep improving.
A similar trend can be found for Speaker-Follower where the improvement of
Speaker-Followerrand is also stuck but Speaker-Followeraps can lead to even bet-
ter performance.

Difficulty and Usefulness of the APS-sampled Paths For a more intu-
itive view of the difficulty and usefulness of the APS-sampled paths, we conduct
experiments shown in Table 6 to quantitatively compare them with randomly-
sample paths. As you can see, the APS-sampled paths seem to be the most
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Fig. 7. The success rate under validation-
unseen set under different pre-exploration
steps for Seq2Seq and Speaker-Follower.

Fig. 8. The improvement of success rate
over the scene feature difference under
each validation-unseen environment under
the pre-exploration. Each point represents
a distinct validation-unseen environment.

challenging as all models perform worst on them. These paths can in turn help
train a more robust navigation model (Seq2Seqaps) that outperforms the model
trained with randomly sampled paths. Moreover, Seq2Seqaps even performs bet-
ter on augrand than Seq2Seqrand which shows that augaps is not only challenging
but also covers useful paths over augrand.

Pre-Exploration Table. 2 has shown the improvement brought from the pre-
exploration. While, those paths in training, validation, and testing sets are all
shortest path but the paths sampled from our APS under unseen environments
are not promised to be the shortest. With more pre-exploration steps, the model
has more opportunities to explore the unseen environment but at the same time,
those too complicated paths sampled from APS may hurt the model. Fig. 7
presents the success rate under different pre-exploration steps. It shows a trade-
off between the model performance and the iterations of the pre-exploration. For
Seq2Seq, 15 steps of pre-exploration come out the best result and 40 steps are
most suitable for Speaker-Follower.

We also analyze the performance under the pre-exploration under each un-
seen environments. Fig. 8 demonstrates the improvement of the success rate over
the scene feature difference. Each point represents a distinct validation-unseen
environment. The feature difference under each unseen environment is calcu-
lated as the mean of the L2-distance between the visual feature of all scenes
from that environment and all scenes in the training environments. In general,
most of the unseen environments gain improvement under the pre-exploration.
We also find a trend that under the environment which has a larger feature dif-
ference, it can improve more under the pre-exploration. It shows that under more
different environments, the pre-exploration can be more powerful which makes
it practical to be more adaptive and generalized to real-life unseen environments.

Qualitative Results Fig. 9 demonstrates the visualization results of the nav-
igation path without and with pre-exploration for the instruction “Walk out of
the bathroom”. Under the unseen environment, it is difficult to find out a path
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Fig. 9. The visualization example of the comparison between without and with the
pre-exploration under the validation-unseen environment.

to get out of the unfamiliar bathroom, and as is shown in Fig. 9(a), the model
without pre-exploration is stuck inside. In contrast, with the knowledge learned
during the pre-exploration phase, the model can successfully walk out of the
bathroom and eventually achieve the final goal.

5 Conclusion

In this paper, we integrate counterfactual thinking into the vision-and-language
navigation (VLN) task to solve the data scarcity problem. We realize counter-
factual thinking via adversarial learning where we introduce an adversarial path
sampler (APS) to only consider useful counterfactual conditions. The proposed
APS is model-agnostic and proven effective in producing challenging but useful
paths to boost the performances of different VLN models. Due to the power of
reasoning, counterfactual thinking has gradually received attention in different
fields. We believe that our adversarial training method is an effective solution to
realize counterfactual thinking in general, which can possibly benefit more tasks.
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