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Figure 1: (a) The comparison showcases Ferret-v2’s superior referring and grounding
abilities over Ferret, particularly in identifying objects and texts within small regions. (b)
Ferret-v2 notably exceeds Ferret’s performance in tasks requiring detailed regional and
global reasoning and understanding (all w/ 7B models).

Abstract

While Ferret seamlessly integrates regional understanding into the Large
Language Model (LLM) to facilitate its referring and grounding capability,
it poses certain limitations: constrained by the pre-trained fixed visual en-
coder and failed to perform well on broader tasks. In this work, we unveil
Ferret-v2, a significant upgrade to Ferret, with three key designs. (1) Any
resolution grounding and referring: A flexible approach that effortlessly
handles higher image resolution, improving the model’s ability to process
and understand images in greater detail. (2) Multi-granularity visual encod-
ing: By integrating the additional DINOv2 encoder, the model learns better
and diverse underlying contexts for global and fine-grained visual informa-
tion. (3) A three-stage training paradigm: Besides image-caption alignment,
an additional stage is proposed for high-resolution dense alignment before
the final instruction tuning. Experiments show that Ferret-v2 provides
substantial improvements over Ferret and other state-of-the-art methods,
thanks to its high-resolution scaling and fine-grained visual processing.

1 Introduction

Multimodal Large Language Models (MLLMs) (Koh et al., 2023; Wu et al., 2023a; Yang et al.,
2023; Liu et al., 2023d; Wu et al., 2023c; Li et al., 2023d; Ye et al., 2023; Wu et al., 2023b; Li
et al., 2023a; Wang et al., 2023a; Gao et al., 2024; McKinzie et al., 2024) have increasingly
become pivotal in the recent surge of advancements in AI, serving as foundational elements

†Equal contribution.
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in the development of versatile general-purpose assistants. However, these methods were
built on coarse image-level alignments, which suffer from fine-grained understanding (such
as region description and reasoning). To this end, Peng et al. (2023); Chen et al. (2023b); You
et al. (2023) integrate the grounding abilities and unlock the referential ability in dialogue,
i.e., enable the user to point to the object or region as input, and the model response with
spatial coordinates of bounding boxes. Such capability fulfills fine-grained vision tasks,
which is great progress in MLLMs.

While grounding and referring MLLMs exhibit strong performance, there are still many chal-
lenges that remain unresolved. For example, the aforementioned methods use CLIP (Jiang
et al., 2023) or its variants (Sun et al., 2023) as the vision encoder. As the pre-trained image
encoders normally adopt a relatively low image resolution, e.g., 224×224, it severely hinders
fine-grained visual comprehension for MLLMs. Though some task-specific MLLMs (Lv
et al., 2023; Hong et al., 2023; Ye et al., 2023) have explored strategies for upscale processing,
these approaches are marred by undue complexity for their own domains and cannot per-
form well on traditional MLLM benchmarks. Thus, the scenario prompts a critical inquiry:
how can we enhance the capabilities of MLLMs to excel in detailed vision-related tasks without
compromising their proficiency in global reasoning?

To answer this question, we explore the potential from three aspects, i.e., higher-resolution
scaling, multi-granularity visual encoding, and model training recipes. We choose Fer-
ret (You et al., 2023) as the robust baseline since it has two advantages: (i) mutual benefits
between referring and grounding, and (ii) more versatile referring capability (strokes,
scribbles, or complex polygons). Firstly, we conduct a careful investigation into higher-
resolution scaling, and evaluate the performance of two mainstream methods, “direct
upsampling” (Wang et al., 2023a; Bai et al., 2023) and “any resolution” (Gao et al., 2024; Liu
et al., 2024), on (i) Visual detail analysis (ROC (You et al., 2023) & REC (Kazemzadeh et al.,
2014)), (ii) Resolution-critical OCR tasks (TextVQA (Singh et al., 2019)), and (iii) Reasoning
MLLM benchmarks (Ferret-Bench (You et al., 2023)). Our analysis indicates that the “any
resolution” approach outperforms “direct upsampling” in harnessing image details while
retaining the knowledge acquired during pre-training for efficient scaling. This positions
“any resolution” as a superior strategy for tasks requiring advanced visual comprehension.

By adopting the “any resolution” method, which involves dividing the image into sub-
patches for processing by the CLIP encoder, we observed that incorporating both global
context and high-resolution patches into visual embeddings introduces a nuanced com-
plexity. This is because two types of images exhibits distinct characteristics. To mitigate
this gap, we propose the integration of a DINOv2 encoder (Oquab et al., 2023). Renowned
for its proficiency in delineating finer details pertaining to local objects, DINOv2 promises
to bolster the model’s ability to perceive fine-grained aspects. Additionally, we employ
separate MLP projectors for each vision encoder to facilitate a deeper exploration of the
varying contexts presented by global and fine-grained visual information, aiming for a more
comprehensive understanding and representation.

Furthermore, the model is strategically trained in three stages, enhancing resolution han-
dling while maintaining vision-language alignment in a “coarse-to-fine” manner. Initially,
the model is trained on low-resolution images for efficient image-caption alignment. Subse-
quently, we recognize the gap that several downstream tasks demand a more accurate and
thorough spatial understanding and go beyond just the broad semantics, so we specifically
design the 2nd stage to align every possible local object of the image with detailed semantics
with dense referring and detection data. Finally, the model undergoes visual instruction
fine-tuning to better interpret user intent.

The contributions of this paper are summarized as follows: (i) We provide a thorough
analysis of higher-resolution scaling, and found that the “any resolution” method consis-
tently outperforms “direct upsampling”. (ii) Based on “any resolution”, we further propose
multi-granularity visual encoding, where the low-resolution image is encoded via CLIP,
while the high-resolution sub-patches are encoded via DINOv2. This strategy fosters a
deeper understanding of both global and fine-grained visual contexts. (iii) Ferret-v2 is
trained in a three-stage process, where an additional stage is proposed for high-resolution
dense alignment before the final instruction tuning. Extensive experiments on a wide range

2



Published as a conference paper at COLM 2024

of tasks, including referring and grounding, visual question answering, and modern MLLM
benchmarks demonstrate the superiority of Ferret-v2 over existing works (see Fig. 1).

2 Background

Coarse-level MLLMs. Motivated by the advanced reasoning abilities demonstrated by
LLMs (OpenAI, 2022; Chowdhery et al., 2022; Touvron et al., 2023a;b; Zhang et al., 2022b;
Wei et al., 2021), there is a growing interest in extending these skills to visual understanding,
leading to the emergence of multimodal LLMs. For example, Flamingo (Alayrac et al., 2022)
utilizes a cross-attention mechanism to enhance visual context awareness, enabling more
sophisticated context-aware visual learning. Models such as LLaVA (Liu et al., 2023b;a)
and MiniGPT-4 (Zhu et al., 2023) focus on synchronizing image and text features before
applying instruction tuning. Additionally, BLIP-2 (Li et al., 2023d) and mPLUG-OWL (Ye
et al., 2023) offer methods for incorporating image features using a visual encoder, which is
then combined with textual embeddings in the LLM architecture. Nonetheless, despite their
advancements, these MLLMs, including the latest GPT-4V (OpenAI, 2023), are limited to
producing text outputs, restricting their application in scenarios that demand rich region-
level visual perception.

Region-level MLLMs. In recent investigations, there has been a growing focus on the
convergence of foundation models and the tasks related to dense visual perception. For
example, Li et al. (2023c); Zou et al. (2023); Koh et al. (2023) leverage the CLIP pre-trained
foundation models to enable open-world detection, but they are unable to handle complex
instructions. Differently, VisionLLM (Wang et al., 2023c) combines a range of vision-centric
tasks by utilizing instruction tuning with LLMs. However, it may fall short of fully harness-
ing the potential of LLMs for handling intricate reasoning tasks. In parallel research efforts,
grounding capabilities and open-vocabularies detectors are leveraged by Kosmos-2 (Peng
et al., 2023), Qwen-VL (Bai et al., 2023) and DetGPT (Pi et al., 2023), enabling user-guided
detection. Moreover, GPT4RoI (Zhang et al., 2023b), Shikra (Chen et al., 2023b), LLaVA-
G (Zhang et al., 2023a), and Ferret (You et al., 2023) introduce spatial boxes as input and
train the model using region-text pairs, offering regional image understanding. However,
all the above methods utilize low-resolution image encoders and thus limit the capability of
perceiving more detailed analysis.

3 Methods

We first revisit the design principles of Ferret in Sec. 3.1 and present the investigation into
higher-resolution scaling in Sec. 3.2. Subsequently, in Sec. 3.3, we delve into advancements in
the model architecture, including techniques for grounding and referring at any resolution,
as well as visual encoding with multiple granularities. Finally, we introduce an enhanced
training methodology aimed at refining the model’s proficiency in aligning global and local
elements in Sec. 3.4.

3.1 A Revisit of Ferret

In recent investigations, there has been a growing focus on the convergence of models
(Zhang et al., 2023b; Chen et al., 2023b; Peng et al., 2023; Lai et al., 2023; Zhao et al., 2023; You
et al., 2023) and the tasks related to visual perception. Ferret (You et al., 2023) distinguishes
itself from other MLLMs by excelling in spatial referring and grounding within natural
images of diverse shapes and levels of detail.

To refer to various types of regions, such as points, boxes, or free-form shapes, Ferret de-
veloped a hybrid region representation, where each region is referred to by a combination
of discrete coordinate tokens and continuous region features, as well as region names if
available. The coordinates are normalized into the range from 0 to 1000, and a point or
shape is respectively expressed by [x, y] or [xmin, ymin, xmax, ymax]. The continuous region
feature is extracted by a spatial-aware visual sampler that samples and aggregates fea-
tures of the region. Ultimately, a region is represented by “⟨region name⟩ ⟨coordinates⟩
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(a) ROC (LVIS-box). (b) REC (RefCOCOg). (c) TextVQA. (d) Ferret-Bench.

Figure 2: Performance of “direct upsampling” and “any resolution” w/ 448×448 image
resolution in ROC, REC, TextVQA, and Ferret-Bench. (∗ indicates the encoder is frozen
during fine-tuning. ⋆ is denoted as vanilla Ferret w/ image resolution of 336×336.)

⟨continuous fea⟩” and fed into the model for referring. e.g., “What is in the region [100, 50,
200, 300] ⟨continuous fea⟩?”. To achieve grounding, Ferret generates the box coordinates
right after the corresponding regions/nouns in the text response, e.g., “There is a dog [100,
150, 300, 200] in the figure.”

Ferret encodes the image with a pre-trained visual encoder (CLIP-ViT-L/14) (Radford et al.,
2021) and then feeds the image feature as additional tokens alongside the text input (and
hybrid region representation if any) into a decoder-only language model (Vicuna (Zheng
et al., 2023)). The training contains two stages, image-caption alignment pre-training and
instruction-tuning, updated with next-token-prediction loss.

While Ferret boasts flexibility and superior performance, it is hindered by the limitations
imposed by the fixed resolution of its pre-trained encoder, which restricts its ability to fully
exploit the advantages of enhanced region referring and localization accuracy. Motivated
by this, we initially delve into identifying the most efficacious methods for high-resolution
scaling. Subsequently, we unveil Ferret-v2, a substantial extension of the Ferret series, aimed
at examining a broader and more inclusive multimodal learning framework.

3.2 Analysis of Higher Resolution Scaling

For further analysis, we conduct a series of controlled experiments using different high-
resolution scaling methods, i.e., “direct upsampling”, and “any resolution”(Liu et al., 2024).
The overall architecture and training process follows Ferret (You et al., 2023) but with a
simple modification from a linear layer to a two-layer Multi-Layer Perceptrons (MLPs).
Additionally, to enable the model to better handle short-form answers and perform on
more benchmarks, we follow LLaVA 1.5 (Liu et al., 2023b) and add additional task-oriented
datasets for VQA (Antol et al., 2015) and OCR to the existing GRIT (You et al., 2023), which
was previously used in Ferret. To streamline our study, we choose 4 representative tasks:
ROC (LVIS: box), REC (RefCOCOg), TextVQA, and Ferret-Bench, and measure the capability
of the trained models comprehensively.

Direct upsampling v.s. Any resolution. For uniformity in our experiment, we standardize
on a target resolution of 448 1, which is upscaled from 336 as the vision encoder’s pre-
training resolution for both scaling methods to ensure identical image tokens are input
into the LLMs. In the case of “direct upsampling”, positional embedding interpolation is
applied, and the CLIP backbone is adjusted to this new resolution during the fine-tuning
phase. For “any resolution”, we predefined a set of resolutions to support up to six grids
2. Given a image, we first select the optimal resolution by prioritizing fitting the original
image’s aspect ratio and size as closely as possible while minimizing wasted resolution, and
we resize the input image to the optimal resolution and split the image into these grids. All
image patches are encoded by the CLIP encoder separately, and their features are input into

1The numbers of tokens are dynamic given different input image resolutions, but the maximum
number of tokens is 1280. We chose 448 with computational overhead in mind.

2We use grid configurations of {1x1, 1x2, 1x3, 1x4, 1x5, 1x6, 2x2, 2x3, and their transpose}

4



Published as a conference paper at COLM 2024

Large Language Model 

Embedding

Low-resolution 
Global Image Text w/ references

Can you describe the
 region [300, 20, 360, 300] 

<continuous> ?

Spatial-Aware 
Visual Sampler

It’s a magnifier [310, 15, 350, 320] held 
by a ferret [150, 71, 512, 955].

Local Patches
Find Grid Config & Resize & Split

Resize

CLIP
Encoder

DINOv2
Encoder

Projector_2Projector_1

Interpolate

Merge & 
FlattenFlatten

Merge

Referred
Region

Ferret-v2 Model

!!

!"# !"$

!"% !"&

Figure 3: Overview of the proposed Ferret-v2 model architecture.

LLMs as image tokens. We trained the models using both frozen and unfrozen encoder
configurations.

As highlighted in Fig. 2, our comparative analysis revealed that the “any resolution” scaling
method not only demonstrated significant improvements across all tasks over the vanilla Fer-
ret but also outshined the “direct upsampling” approach. Another interesting observation
is that in “any resolution”, updating the vision encoder always brings a boost over freezing
it, whereas in “direct upsampling”, freezing the vision encoder is sometimes even better (as
shown in the TextVQA result). As for the reason behind those findings, we hypothesize that
“direct upsampling” forces the ViT to adapt to a higher resolution, which brings much longer
token lengths deviated from its pre-training data. However, the scale of fine-tuning data is
usually much smaller than the pre-training data of the vision encoder (1.3M vs. 400M in our
setting), which disturbs its pre-training knowledge. On the contrary, “any resolution” crops
the high-resolution image into patches, and the vision encoder processes local patches in a
similar token length to its pre-training procedure. Overall, “any resolution” has proved to
be a more optimal strategy that balances leveraging high-resolution images and preserving
valuable pre-training knowledge for effective scaling.

3.3 Model Architecture

Multi-Granularity Visual Encoding. With the adoption of the “any resolution” scaling
method, yet another problem arises naturally: there is a granularity difference between
global low-resolution image Ig and local split image patches {Il1, Il2, ..., IlN}, i.e., the global
image Ig sees the entire scene but in a coarse resolution, while each local patch Ili can see
only a part of the scene but in precise detail.

To deal with this issue, we explore encoding those two types of images with distinct visual
encoders. Specifically, we choose the CLIP (Radford et al., 2021) to encode global images
and DINOv2 (Oquab et al., 2023) to encode local split patches. Our motivation behind
this comes from the difference in their pre-training paradigms. The image-text contrastive
objective used in CLIP, enables these models to capture image-level semantics from captions
but tends to neglect the rich pixel-level details due to the limited fine-grained information in
the guided captions. DINOv2, trained with self-supervision objectives of both image-level
and patch-level, can capture more detailed information about local objects such as shape or
texture and therefore possess fine-grained perception abilities. Furthermore, we employ
separate MLP projectors for the dual vision encoders, aiming to differentiate and learn the
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Figure 4: Model Training Paradigm. The model is trained from a “coarse-to-fine” manner.
’snowflake’ denotes that the module is frozen.

diverse underlying contexts for global and fine-grained visual information:

Fg = CLIP(Ig); Fli = DINO(Ili), Ili ∈ {Il1, Il2, ..., IlN} (1)
Hg =MLPg(Fg); Hli =MLPl(Fli). (2)

Then, the feature maps of local patches are merged into a large feature map according to
its original arrangement and then flattened into a sequence of image features. The global
image’s feature map is also flattened. Two sequences are connected and input into LLM as
visual “tokens”.

Any resolution Referring. The hybrid region representation introduced in Ferret has
proved effective and versatile in handling various types of referring such as point, box,
scribble, etc. What lies at the core of it is the extraction of continuous region features, which
is performed by a Spatial-Aware Visual Sampler. However, directly feeding global image
features into the visual sampler may not be sufficient to recognize the small referred objects
in high-resolution images. Inspired by our previous findings about the visual granularity
difference, we further propose to integrate the best of both global semantics and local details
for more precise referring. To be more specific, after obtaining the encoded features of
global image Hg and local patches {Hl1, Hl2, ..., HlN}, we first merge the feature maps of
local patches into a large feature map following their original spatial arrangement, and the
global image feature map is upsampled via interpolation to align the size of the merged
feature map.

H′l = Concat{Hl1, Hl2, ..., HlN} (Hli ∈ Rwl×hl×c, H′l ∈ Rnwl×mhl×c, n ×m = N) (3)

H′g = Upsample(Hg) (Hg ∈ Rwg×hg×c, H′g ∈ Rnwl×mhl×c
) (4)

Then, we fuse the two processed feature maps by adding them channel-wise: Ha = H′l +H′g,
and obtain a high-resolution feature map with strong semantics and local awareness. The
Ha is input into a spatial-aware visual sampler (You et al., 2023) to extract continuous region
features. Then the continuous feature is combined with discrete coordinates as a hybrid
region representation to refer to any region in the image, as shown in Fig. 3.

Any resolution Grounding. By combining visual embeddings from both global image
and local sub-patches, our model can more effectively uncover visual details from high
resolution and bridge the semantics. Without specific adaptation, our framework aligns
seamlessly with the grounding design in Ferret; therefore, similarly, we delineate the output
coordinate regions through an intuitive numerical representation and employ the LLM as
the principal mechanism for deciphering the intrinsic correlations.

3.4 Training Paradigm

Stage I: Image-Caption Alignment. Feature alignment before fine-tuning has been widely
utilized to achieve better training efficiency. We adopt this strategy to connect the pre-trained
CLIP encoder with the LLM using 1.4M image-text pairs, converted to instruction-following
data by (Chen et al., 2023c). The low-resolution image encoder and LLM parameters remain
frozen, with only the projector trainable. Without any referring in these image-text pairs,
the visual sampler doesn’t participate in the training of stage I.
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Stage II: High-resolution Dense Alignment. Although the previous image-caption align-
ment pre-training is effective in bridging vision and LLM in coarse semantics, there still
exists a severe gap between the image-caption alignment and instruction tuning stage.
Many downstream tasks, such as referring, grounding, OCR, etc, require a more precise and
comprehensive spatial perception of the image, beyond solely coarse semantics.

To alleviate the above-mentioned issue, we propose a novel pre-training stage aimed at
high-resolution dense alignment. Specifically, instead of aligning the entire image with
a global caption, this stage aligns every possible local object of the image with detailed
semantics. Correspondingly, two types of tasks and input data are designed. (1) Dense
Referring: given the image, the input question refers to regions of all objects one by one, and
asks about their categories, the model is required to output the predicted classes accordingly.
An example is “Question: Please classify the objects in the following locations. 1: ⟨region 1⟩, 2:
⟨region 2⟩, .... Answer: Here are the categories: 1: cat, 2: dog, ...”. (2) Dense Detection: Given
the image, the input question asks to localize all the objects. To reduce randomness and
incorporate spatial awareness, we forge the answer to list objects in a certain order, such
as raster scan order (from top to bottom, from left to right). An example is “Question:
Please localize visible objects in the image in a raster scan order. Answer: The objects are: 1: cat
⟨coordinate 1⟩, 2: dog ⟨coordinate 2⟩, ...”. To ensure the efficient learning of the fine-grained
semantics, we collect data from densely annotated object dataset - LVIS (Gupta et al., 2019).
On average, each sample includes around 10 object locations, whereas in the instruction
tuning stage, referring and grounding datasets mostly have only one or two object locations
mentioned per sample.

In terms of the model, we take a pre-trained DINOv2 as the visual encoder for local patches,
in addition to the CLIP encoder for global images, as mentioned in Sec. 3.3. The projector
after CLIP is inherited from the image-caption alignment stage, and we further add a
separate projector after DINOv2, whose weights are initialized from the CLIP’s projector for
stability. Then we freeze two vision encoders and LLMs, and only update the two projectors
as well as the visual sampler in this alignment stage, with the next-token-prediction loss.

Stage III: Intent-Enhanced Instruction Tuning. After the second stage of pre-training,
the model acquires the capability for a comprehensive global understanding of images,
alongside the ability to identify and narrate objects of interest using free-form texts and
visually referred regions obtained flexibly. Our aim is to enhance the model’s adherence to
user instructions while maintaining its high-resolution visual perception abilities. To achieve
this, we render the encoders, projectors, region samplers, and the LLM itself trainable.
For training, we utilize the GRIT dataset (You et al., 2023) and incorporate additional
task-specific datasets for VQA (Antol et al., 2015) and OCR (Singh et al., 2019; Sidorov
et al., 2020) from LLaVA 1.5 (Liu et al., 2023b). Furthermore, we identified two additional
strategies that contribute to enhanced performance: (i) Data Unification: To facilitate the
model’s seamless transition from a global understanding based on plain texts to a regional
comprehension utilizing hybrid representations, we employ an open-vocabulary object
detector, GLIPv2 (Zhang et al., 2022a), to localize groundable nouns in the text on VQA
datasets, and a public OCR model (Kuang et al., 2021) to get text bounding boxes on
OCR datasets. (ii) Task Generalization: In order to diminish ambiguity across tasks that
necessitate referring and grounding capabilities and those that do not, we adopt a method
similar to LLaVA 1.5, which involves appending the prompt, “Include the coordinates for each
mentioned object.”, to further clarify task requirements.

4 Experiments

4.1 Referring and Grounding Tasks

Referring. Ferret-v2’s enhanced understanding of referential queries is evident in its
ability to interpret the semantics of specified regions within an image accurately. This is
particularly assessed through the task of Referring Object Classification (ROC), where the
model is tasked with identifying the object in a region mentioned in a query. Initially, like
Ferret, we utilize the validation split of the LVIS dataset, covering more than 1,000 object
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Models LVIS (%) SA-refer (%)

Point Box Free-form Point Box Free-form

Random Guess 50 50 50 50 50 50
Kosmos-2 ✕ 60.25 ✕ ✕ 53.97 ✕

Shikra-7B 57.82 67.71 ✕ 54.15 56.82 ✕

GPT4-ROI ✕ 61.76 ✕ ✕ 55.02 ✕

CogVLM-17B ✕ 79.62 ✕ ✕ 61.77 ✕

SPHINX-2k 72.83 82.97 ✕ 61.21 63.39 ✕

Ferret-7B 67.94 79.42 69.77 61.91 62.99 57.74
Ferret-v2-7B (Ours) 74.55 86.59 76.13 68.38 68.83 62.07

Ferret-13B 68.35 80.46 70.98 63.16 63.35 58.02
Ferret-v2-13B (Ours) 75.09 87.74 76.35 67.38 69.49 62.58

Table 1: Results of ROC on three different refer-
ring types, including point, box, and free-form
shape. ‘✕’ means no such capability.

Models Ferret-Bench
Referring Referring Grounding in Avg.

Description Reasoning Conversation
LLaVA 41.4 31.7 28.8 34.0
Kosmos-2 51.8 33.7 48.4 44.6
Shikra-7B 46.0 41.6 50.1 45.9
CogVLM-17B 67.1 67.6 51.7 62.1
Osprey-7B 72.2 67.8 – –
SPHINX-2k 55.6 70.2 66.4 64.0

Ferret-7B 68.7 67.3 57.5 64.5
Ferret-v2-7B (Ours) 79.9 81.7 65.2 75.6
Ferret-13B 70.6 68.7 59.7 66.3
Ferret-v2-13B (Ours) 79.6 79.4 65.7 74.9

Table 2: Results on the proposed Ferret-Bench
via GPT4-as-a-Judge evaluation.

Models RefCOCO RefCOCO+ RefCOCOg Flickr30k Entities
val testA testB val testA testB val test val test

MAttNet (Yu et al., 2018) 76.40 80.43 69.28 64.93 70.26 56.00 66.67 67.01 – –
OFA-L (Wang et al., 2022) 79.96 83.67 76.39 68.29 76.00 61.75 67.57 67.58 – –
UNITER (Chen et al., 2020) 81.41 87.04 74.17 75.90 81.45 66.70 74.02 68.67 – –
VILLA (Gan et al., 2020) 82.39 87.48 74.84 76.17 81.54 66.84 76.18 76.71 – –
UniTAB (Yang et al., 2022) 86.32 88.84 80.61 78.70 83.22 69.48 79.96 79.97 78.76 79.58
MDETR (Kamath et al., 2021) 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89 82.3* 83.8*
G-DINO-L (Liu et al., 2023c) 90.56* 93.19* 88.24* 82.75* 88.95* 75.92* 86.13* 87.02* – –

Shikra-7B (Chen et al., 2023b) 87.01 90.61 80.24 81.60 87.36 72.12 82.27 82.19 75.84 76.54
MiniGPT-v2-7B (Chen et al., 2023a) 88.06 91.29 84.30 79.58 85.52 73.32 84.19 84.31 – –
Qwen-VL-7B (Bai et al., 2023) 88.55 92.27 84.51 82.82 88.59 76.79 85.96 86.32 – –
SPHINX-2k (Lin et al., 2023) 91.10 92.88 87.07 85.51 90.62 80.45 88.07 88.65 – –
LLaVA-G (Zhang et al., 2023a) 89.16 – – 81.68 – – 84.82 – 83.03 83.62
VistaLLM (Pramanick et al., 2023) 88.1 91.5 83.0 82.9 89.8 74.8 83.6 84.4 – –
Ferret-7B (You et al., 2023) 87.49 91.35 82.45 80.78 87.38 73.14 83.93 84.76 80.39 82.21
Ferret-v2-7B (Ours) 92.79 94.68 88.69 87.35 92.75 79.3 89.42 89.27 85.52 85.83

Shikra-13B (Chen et al., 2023b) 87.83 91.11 81.81 82.89 87.79 74.41 82.64 83.16 77.41 78.44
Griffon v2 (Zhan et al., 2024) 89.6 91.8 86.5 81.9 85.5 76.2 85.9 86.0 – 84.8
CogVLM-Grounding-17B (Wang et al., 2023a) 92.76 94.75 88.99 88.68 92.91 83.39 89.75 90.79 – –
Ferret-13B (You et al., 2023) 89.48 92.41 84.36 82.81 88.14 75.17 85.83 86.34 81.13 84.76
Ferret-v2-13B (Ours) 92.64 94.95 88.86 87.39 92.05 81.36 89.43 89.99 85.33 86.25

Table 3: Performance comparison (Acc@0.5) on the REC (RefCOCO, RefCOCO+, RefCOCOg) and
phrase grounding (Flickr30k Entities) tasks. ∗ indicates that the method is specifically fine-tuned in
the second stage.

categories with a majority being “in-domain” images. To further demonstrate Ferret-v2’s
improved ability to reference smaller objects, we compile an “in-the-wild” evaluation set
using partial images from SA-1B (Kirillov et al., 2023) and corresponding human annotations
of objects from AS-human (Wang et al., 2023b), which contains high-resolution images,
open-vocabulary objects and precise masks. In total, we manually verified 700+ high-quality
samples with in-the-wild objects and called it SA-refer. As shown in Table 1, Ferret-v2
significantly outperforms previous models on LVIS and sets up a new benchmark not fully
realized in prior Ferret, primarily contributing to high-resolution scaling. SPHINX also uses
high-resolution input images; however, on more challenging tasks for SA-1B, Ferret-v2 still
outperforms it, indicating the benefits of our special design for any resolution referring.

Grounding. Visual grounding aims to ground language queries into aligned image re-
gions. We experiment on the sub-tasks of referring expression comprehension (REC) with
three renowned benchmarks: RefCOCO (Lin et al., 2014), RefCOCO+ (Yu et al., 2016), and
RefCOCOg (Mao et al., 2016), and phrase grounding with Flickr30k Entities dataset (Plum-
mer et al., 2015). As evidenced in Table 3, Ferret-v2 enables the use of high-resolution input
images, leading to significant improvements over Ferret (You et al., 2023). Besides, Ferret-v2
outperforms most state-of-the-art models, including specialist model G-DINO-L (Liu et al.,
2023c) and other generalist models, which adopt even larger input image sizes. Our 7B
model can achieve comparable results to CogVLM-Grounding (Wang et al., 2023a), which
utilizes a 4B vision model and a 6B connection module. These results demonstrate the
competitive capability of Ferret-v2 for visual grounding.

Ferret-Bench. Ferret-Bench (You et al., 2023) is carefully designed to evaluate and bench-
mark the fine-grained capability of multimodal conversational models, particularly in their
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Method VQAv2 GQA VQAT POPE MMEP SEED LLaVAC LLaVAW MM-Vet Obj-Hal ↓

BLIP-2-13B 41.0 41 42.5 85.3 1293.8 46.4 – 38.1 22.4 –
InstructBLIP-7B – 49.2 50.1 – – 53.4 – 60.9 26.2 –
IDEFICS-9B 50.9 38.4 25.9 – – – – – – –
Qwen-VL-7B 78.8∗ 59.3∗ 63.8 – – 56.3 – – – –
Qwen-VL-Chat-7B 78.2∗ 57.5∗ 61.5 – 1487.5 58.2 – – – 43.8/23.0
LLaVA-1.5-7B 78.5∗ 62.0∗ 58.2 85.9 1510.7 58.6 82.7 63.4 30.5 46.3/22.6

Ferret-v2-7B (Ours) 81.5∗ 64.7∗ 61.7 87.8 1510.3 58.7 89.1 67.7 34.9 23.8/14.7

InstructBLIP-13B – 49.5 50.7 78.9 1212.8 – – 58.2 25.6 –
Shikra-13B 77.4∗ – – – – – – – – –
IDEFICS-80B 60.0 45.2 30.9 – – – – – – –
LLaVA-1.5-13B 80.0∗ 63.3∗ 61.3 85.9 1531.3 61.6 83.4 70.7 35.4 –
LLaVA-1.5-13B-HD 81.8∗ 64.7∗ 62.5 86.3 1500.1 62.6 – 72.0 39.4 –

Ferret-v2-13B (Ours) 81.8∗ 64.8∗ 62.2 88.1 1521.4 61.7 90.7 69.9 35.7 34.7/16.8

Table 4: Comparison with SoTA methods on 10 benchmarks. Ferret-v2 achieves comparable
performance with others. ∗The training images of the datasets are observed during training.

Resolution Referring Grounding OCR Reasoning
LVIS SA REC TextVQA Ferret-Bench

Fixed Res. 68.4 61.9 86.8 54.2 71.1
+ AnyRes. Ground 72.2 67.7 88.3 60.2 72.2
+ AnyRes. Refer 73.0 67.8 88.5 60.7 72.6

Table 5: Ablation study on any resolution grounding
and referring.

Model Referring Grounding OCR Reasoning
LVIS SA REC TextVQA Ferret-Bench

CLIP 73.0 67.8 88.5 60.7 72.6
+ DINOv2 73.8 68.0 89.1 61.3 75.3
+ Stage II 74.6 68.4 89.3 61.7 75.6

Table 6: Ablation study on the effectiveness
of the multi-granularity visual encoding and
Stage II Pre-training.

ability to refer to, describe, and reason about specific regions within images, thereby fa-
cilitating a more structured evaluation of models’ referring and grounding capabilities
in a multimodal context. We use Ferret-Bench to compare Ferret with previous models,
including LLaVA (Liu et al., 2023b), Shikra (Chen et al., 2023b), Kosmos-2 (Peng et al., 2023),
and Osprey (Yuan et al., 2023). Results are summarized in Table 2. Ferret-v2 demonstrates
superior performance in all types of tasks, indicating the strong spatial understanding and
commonsense reasoning capability of the model.

4.2 Modern MLLM Benchmarks

In pioneering the fields of referring and grounding, Ferret has demonstrated remarkable
region reasoning capabilities, as illustrated above. However, it falls short of academic
benchmarks that typically demand tasks-oriented datasets. For Ferret-v2, we specifically
include pseudo-labeled VQA and OCR datasets and also append the special prompt, as
mentioned in Sec. 3.4. This strategic enhancement progressively narrows the gap between
task-specific region-level analyses and broader, more generalized tasks, thereby extend-
ing Ferret-v2’s applicability to encompass both fine-grained and coarse-grained tasks. As
presented in Table 4, we benchmark Ferret-v2 against existing MMLMs across a compre-
hensive suite of 10 benchmarks: VQAv2(Antol et al., 2015), TextVQA(aka.VQAT) (Singh
et al., 2019), GQA (Hudson & Manning, 2019), POPE (Li et al., 2023e), MMEP (Chang et al.,
2023), SEED (Li et al., 2023b), LLaVAC and LLaVAW (Liu et al., 2023b), MM-Vet (Yu et al.,
2023b), Obj-Hal (Yu et al., 2023a)). Our models achieve on-par performance with the latest
state-of-the-art models, particularly excelling in tasks such as VQAv2, GQA, POPE, etc.,
which demand precise spatial information for accurate responses.

5 Ablation Studies

In all the ablation studies below, we follow Sec. 3.2 and primarily focus our evaluation on
the disparate models’ performance across the dimensions of referring, grounding, OCR, and
reasoning. Additionally, We also explore how Ferret-v2 balances accuracy with efficiency.

Any Resolution Grounding and Referring. We conduct an ablation study on any reso-
lution grounding and referring. As illustrated in Table 5, accommodating any resolution
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markedly enhances task performance that necessitates a comprehensive understanding of
higher-resolution details. Integrating the best of both global semantics and local details for
more precise and improved precision in referring tasks across both LVIS and SA datasets.
Furthermore, this integration also modestly enhances grounding capabilities, suggesting
that grounding and referring can derive mutual benefits within our proposed framework.

Multi-Granularity Visual Encoding and Stage-II Pretrain. Our initial ablation study
focuses on incorporating an additional DINOv2 encoder for the encoding of high-resolution
patches. We utilize the projector weights from Stage I of CLIP for initialization, followed
by fine-tuning in Stage III. As demonstrated in Table 6, the exclusive employment of visual
granularity encoding significantly enhances both referring and grounding performance.
Furthermore, introducing an intermediary Stage II in the pre-training process yields im-
provements across all evaluated metrics.

Efficiency and Scalability. We add a detailed analysis of Ferret-v2’s performance on
Referring (LVIS) and Grounding (REC) and a comparison of the computational cost (in
terms of inference time and average token per sec.) with the previous Ferret baseline.

In Table 7, we find that accommodating any resolution markedly enhances task performance,
particularly for tasks that require a comprehensive understanding of higher-resolution de-
tails. Additionally, incorporating an extra DINOv2 encoder significantly improves referring
and grounding performance. While this design leads to increased computational demands,
the performance gains achieved by the model justify the additional computational costs.

Design LLM Task Performance Avg. Inference Time
(sec/it)

Avg. Tokens (per
sec)

Base (Ferret) Vicuna 1.3 Referring (LVIS) 67.9 1.4 6.1
Grounding (REC) 83.9 0.4 5.3

+ Longer Context Vicuna 1.5 Referring 68.4 1.1 4.8
Grounding 86.8 0.3 5

+ AnyRes. Grounding Vicuna 1.5 Referring 72.2 1.7 3.1
Grounding 88.3 0.48 3.2

+ AnyRes. Referring Vicuna 1.5 Referring 73 1.8 3
Grounding 88.5 0.5 3.1

+ DINOv2 (Ferretv2) Vicuna 1.5 Referring 73.8 2 2.8
Grounding 89.1 0.54 2.9

Table 7: Performance comparison of different models and settings. All model inference are
based on 7B scale and performed with 8 Nvidia A100 GPUs using greedy decoding.

6 Conclusions

We present Ferret-v2, a significant upgrade of the vanilla Ferret model. It features advanced
capabilities in handling any resolution referring and grounding, multi-granularity visual
encoding, and a novel three-stage training pipeline. These improvements enable Ferret-v2
to excel in processing and understanding images with higher resolution and finer detail.

Limitations

Ferret-v2 mitigates harmful outputs by using transparent datasets, enhancing spatial knowl-
edge to reduce object hallucinations, and improving instruction-following for unclear
queries. However, its referring and grounding capabilities pose real-world challenges, par-
ticularly in interactive scenarios, where incorrect contextual understanding and ambiguous
references could lead to inaccurate location outputs.

Acknowledgment

The authors would like to thank Yizhe Zhang, Yanghao Li, Liangchen Song, and Keen You
for valuable guidance, suggestions, and feedback. Additional thanks go to Jiaming Hu,
Mingfei Gao for supporting large-scale training.

10



Published as a conference paper at COLM 2024

References
Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,

Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a
visual language model for few-shot learning. NeurIPS, 2022.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In CVPR, pp.
2425–2433, 2015.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding,
localization, text reading, and beyond. arXiv:2308.12966, 2023.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen,
Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large
language models. ACM Transactions on Intelligent Systems and Technology, 2023.

Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechu Liu, Pengchuan Zhang, Raghuraman
Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-
v2: large language model as a unified interface for vision-language multi-task learning.
arXiv:2310.09478, 2023a.

Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng Zhu, and Rui Zhao. Shikra:
Unleashing multimodal llm’s referential dialogue magic. arXiv:2306.15195, 2023b.

Lin Chen, Jisong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and
Dahua Lin. Sharegpt4v: Improving large multi-modal models with better captions. arXiv
preprint arXiv:2311.12793, 2023c.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng,
and Jingjing Liu. Uniter: Universal image-text representation learning. In ECCV, pp.
104–120. Springer, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
et al. Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311,
2022.

Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng, and Jingjing Liu. Large-scale ad-
versarial training for vision-and-language representation learning. In NeurIPS, volume 33,
pp. 6616–6628, 2020.

Peng Gao, Renrui Zhang, Chris Liu, Longtian Qiu, Siyuan Huang, Weifeng Lin, Shitian
Zhao, Shijie Geng, Ziyi Lin, Peng Jin, et al. Sphinx-x: Scaling data and parameters for a
family of multi-modal large language models. arXiv preprint arXiv:2402.05935, 2024.

Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary in-
stance segmentation. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 5356–5364, 2019.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang,
Zihan Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui
agents. arXiv preprint arXiv:2312.08914, 2023.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual
reasoning and compositional question answering. In CVPR, pp. 6700–6709, 2019.

Dongsheng Jiang, Yuchen Liu, Songlin Liu, Xiaopeng Zhang, Jin Li, Hongkai Xiong, and
Qi Tian. From clip to dino: Visual encoders shout in multi-modal large language models.
arXiv preprint arXiv:2310.08825, 2023.

Aishwarya Kamath, Mannat Singh, Yann LeCun, Gabriel Synnaeve, Ishan Misra, and
Nicolas Carion. Mdetr-modulated detection for end-to-end multi-modal understanding.
In ICCV, pp. 1780–1790, 2021.

11



Published as a conference paper at COLM 2024

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. Referitgame: Refer-
ring to objects in photographs of natural scenes. In EMNLP, 2014.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything.
arXiv:2304.02643, 2023.

Jing Yu Koh, Ruslan Salakhutdinov, and Daniel Fried. Grounding language models to
images for multimodal inputs and outputs. In ICML, 2023.

Zhanghui Kuang, Hongbin Sun, Zhizhong Li, Xiaoyu Yue, Tsui Hin Lin, Jianyong Chen,
Huaqiang Wei, Yiqin Zhu, Tong Gao, Wenwei Zhang, Kai Chen, Wayne Zhang, and Dahua
Lin. Mmocr: A comprehensive toolbox for text detection, recognition and understanding.
arXiv preprint arXiv:2108.06543, 2021.

Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa:
Reasoning segmentation via large language model. arXiv preprint arXiv:2308.00692, 2023.

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Jingkang Yang, and Ziwei Liu. Otter:
A multi-modal model with in-context instruction tuning. arXiv:2305.03726, 2023a.

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-
bench: Benchmarking multimodal llms with generative comprehension. arXiv preprint
arXiv:2307.16125, 2023b.

Feng Li, Hao Zhang, Peize Sun, Xueyan Zou, Shilong Liu, Jianwei Yang, Chunyuan Li,
Lei Zhang, and Jianfeng Gao. Semantic-sam: Segment and recognize anything at any
granularity. arXiv:2307.04767, 2023c.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping
language-image pre-training with frozen image encoders and large language models.
arXiv:2301.12597, 2023d.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
object hallucination in large vision-language models. arXiv preprint arXiv:2305.10355,
2023e.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014.

Ziyi Lin, Chris Liu, Renrui Zhang, Peng Gao, Longtian Qiu, Han Xiao, Han Qiu, Chen Lin,
Wenqi Shao, Keqin Chen, et al. Sphinx: The joint mixing of weights, tasks, and visual
embeddings for multi-modal large language models. arXiv preprint arXiv:2311.07575,
2023.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual
instruction tuning. arXiv preprint, 2023a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
NeurIPS, 2023b.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae
Lee. Llava-next: Improved reasoning, ocr, and world knowledge, January 2024. URL
https://llava-vl.github.io/blog/2024-01-30-llava-next/.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li,
Jianwei Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded
pre-training for open-set object detection. arXiv preprint arXiv:2303.05499, 2023c.

Zhaoyang Liu, Yinan He, Wenhai Wang, Weiyun Wang, Yi Wang, Shoufa Chen, Qinglong
Zhang, Yang Yang, Qingyun Li, Jiashuo Yu, et al. Internchat: Solving vision-centric tasks
by interacting with chatbots beyond language. arXiv:2305.05662, 2023d.

12

https://llava-vl.github.io/blog/2024-01-30-llava-next/


Published as a conference paper at COLM 2024

Tengchao Lv, Yupan Huang, Jingye Chen, Lei Cui, Shuming Ma, Yaoyao Chang, Shaohan
Huang, Wenhui Wang, Li Dong, Weiyao Luo, et al. Kosmos-2.5: A multimodal literate
model. arXiv preprint arXiv:2309.11419, 2023.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin
Murphy. Generation and comprehension of unambiguous object descriptions. In CVPR,
2016.

Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp
Dufter, Dhruti Shah, Xianzhi Du, Futang Peng, Floris Weers, et al. Mm1: Methods,
analysis & insights from multimodal llm pre-training. arXiv preprint arXiv:2403.09611,
2024.

OpenAI. GPT-4 technical report. arXiv:2303.08774, 2023.

TB OpenAI. Chatgpt: Optimizing language models for dialogue. openai, 2022.
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