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Abstract

In this paper, we present GraphRel, an
end-to-end relation extraction model which
uses graph convolutional networks (GCNs) to
jointly learn named entities and relations. In
contrast to previous baselines, we consider the
interaction between named entities and rela-
tions via a relation-weighted GCN to better ex-
tract relations. Linear and dependency struc-
tures are both used to extract both sequential
and regional features of the text, and a com-
plete word graph is further utilized to extract
implicit features among all word pairs of the
text. With the graph-based approach, the pre-
diction for overlapping relations is substan-
tially improved over previous sequential ap-
proaches. We evaluate GraphRel on two pub-
lic datasets: NYT and WebNLG. Results show
that GraphRel maintains high precision while
increasing recall substantially. Also, GraphRel
outperforms previous work by 3.2% and 5.8%
(F1 score), achieving a new state-of-the-art for
relation extraction.

1 Introduction

Extracting pairs of entity mentions with seman-
tic relations, i.e., triplets such as (BarackObama,
PresidentOf, UnitedStates), is a central task in in-
formation extraction and allows automatic knowl-
edge construction from unstructured text. Though
important and well-studied, three key aspects are
yet to be fully handled in an unified framework:

• End-to-end joint modeling of entity recognition
and relation extraction;
• Prediction of overlapping relations, i.e., rela-

tions that share a common mention;
• Consideration of the interaction between rela-

tions, especially overlapping relations.

Traditionally, a pipelined approach is used to
first extract entity mentions using a named entity
recognizer and then predict the relations between
every pair of extracted entity mentions (Zelenko

et al., 2003; Zhou et al., 2005; Chan and Roth,
2011). Joint entity recognition and relation ex-
traction models (Yu and Lam, 2010; Li and Ji,
2014; Miwa and Sasaki, 2014; Ren et al., 2017)
have been built to take advantage of the close in-
teraction between these two tasks. While showing
the benefits of joint modeling, these complicated
methods are feature-based structured learning sys-
tems and hence rely heavily on feature engineer-
ing.

With the success of deep neural networks, NN-
based automatic feature learning methods have
been applied to relation extraction. These methods
use CNN, LSTM, or Tree-LSTM on the word se-
quence between two entity mentions (Zeng et al.,
2014; dos Santos et al., 2015), the shortest de-
pendency paths between two entity mentions (Yan
et al., 2015; Li et al., 2015), or the minimal
constituency sub-tree spanning two entity men-
tions (Socher et al., 2012) to encode relevant infor-
mation for each pair of entity mentions. However,
these methods are not end-to-end joint modeling
of entities and relations. They assume entity men-
tions are given and are expected to degrade signifi-
cantly in performance when a named entity recog-
nizer is needed in the pipeline for real world usage.

Another challenge for relation extraction is how
to take into account the interaction between re-
lations, which is especially important for over-
lapping relations, i.e., relations sharing com-
mon entity mentions. For example, (Barack-
Obama, PresidentOf, UnitedStates) can be in-
ferred from (BarackObama, Governance, United-
States); the two triplets are said to exhibit Enti-
tyPairOverlap. Another case is that the former
triplet could also be inferred from (BarackObama,
LiveIn, WhiteHouse) and (WhiteHouse, Presiden-
tialPalace, UnitedStates), where the latter two are
said to exhibit SingleEntityOverlap. Although
common in knowledge base completion, such in-
teraction, whether via direct deduction or indirect



evidence, is particularly difficult for joint entity
recognition and relation extraction models, where
entities are not present in the input. Indeed, al-
though Zheng et al. (2017) propose a strong neu-
ral end-to-end joint model of entities and relations
based on an LSTM sequence tagger, they have to
completely give up overlapping relations.

In this paper, we propose GraphRel, a neu-
ral end-to-end joint model for entity recognition
and relation extraction that is the first to handle all
three key aspects in relation extraction. GraphRel
learns to automatically extract hidden features for
each word by stacking a Bi-LSTM sentence en-
coder and a GCN (Kipf and Welling, 2017) de-
pendency tree encoder. Then GraphRel tags entity
mention words and predicts relation triplets that
connect mentions, where is the 1st-phase predic-
tion.

To gracefully predict relation triplets while tak-
ing into account the interactions between them,
we add a novel 2nd-phase relation-weighted GCN
to GraphRel. Already guided by both entity
loss and relation loss, the 1st-phase GraphRel
extracts node hidden features along dependency
links while establishing a new fully connected
graph with relation-weighted edges. Then, by op-
erating on the intermediate graph, the 2nd-phase
GCN effectively considers the interaction between
entities and (possibly overlapping) relations be-
fore the final classification for each edge. With
GraphRel, our contribution is threefold:

• Linear and dependency structures, as well as
implicit features among all word pairs of the
text, are considered by our method;
• We perform end-to-end, joint modeling of en-

tities and relations while considering all word
pairs for prediction;
• The interaction between entities and relations is

carefully considered.

We evaluate the method on two public relation ex-
traction datasets: NYT and WebNLG. The exper-
imental result shows that GraphRel substantially
improves the overlapping relations over previous
work, and achieves a new state-of-the-art on both
datasets.

2 Related Work

The BiLSTM-GCN encoder part of our model re-
sembles the BiLSTM-TreeLSTM model proposed
by Miwa and Bansal (2016), as they also stack

a dependency tree on top of sequences to jointly
model entities and relations. They use Bi-LSTM
on each sentence for automatic feature learning,
and the extracted hidden features are shared by a
sequential entity tagger and a shortest dependency
path relation classifier. However, while introduc-
ing shared parameters for joint entity recognition
and relation extraction, they must still pipeline the
entity mentions predicted by the tagger to form
mention pairs for the relation classifier.

Instead of trying to classify each mention pair
as in previous work, Zheng et al. (2017) for-
mulate relation extraction as a sequential tagging
problem (NovelTagging) as with entity recogni-
tion. This allows them to model relation extraction
by an LSTM decoder on top of a Bi-LSTM en-
coder. However, while showing promising results
on the NYT dataset, their strength comes from fo-
cusing on isolated relations and completely giv-
ing up overlapping relations, which are relatively
rare in the dataset. In comparison, the proposed
GraphRel gracefully handles all types of relations
while being end-to-end and jointly modeling en-
tity recognition.

Zeng et al. (2018) then propose an end-to-end
sequence-to-sequence model for relation extrac-
tion. They encode each sentence by a Bi-LSTM,
and use the last encoder hidden state to initial-
ize one (OneDecoder) or multiple (MultiDecoder)
LSTMs for dynamic decoding relation triplets.
When decoding, triplets are generated by selecting
a relation and copying two words from the sen-
tence. The seq2seq setup partially handles inter-
action between triplets. However, interactions be-
tween relations are only unidirectionally captured
by considering previous generated triplets with a
compulsory linear order when generating a new
one. Instead, in this paper, we propose propa-
gating entity and relation information on a word
graph with automatically learned linkage by ap-
plying 2nd-phase GCN on top of the LSTM-GCN
encoder.

Recently, considering dependency structure by
GCN has been used in many natural language
processing (NLP) tasks. Marcheggiani and Titov
(2017) applies GCN on word sequences for se-
mantic role labeling. Liu et al. (2018) encode long
documents via GCN to perform text matching. Ce-
toli et al. (2016) combine RNN and GCN to rec-
ognize named entities. There are also some works
(Peng et al., 2017; Zhang et al., 2018; Qian et al.,



Figure 1: Graph Convolutional Network (GCN)

2019; Luan et al., 2019) about considering depen-
dency structure of word sequence for relation ex-
traction. In our proposed GrpahRel, we not only
stack Bi-LSTM and GCN to consider both linear
and dependency structures but also adopt a 2nd-
phase relation-weighted GCN to further model the
interaction between entities and relations.

3 Review of GCN

As convolutional neural network (CNN), Graph
Convolutional Network (GCN) (Kipf and Welling,
2017) convolves the features of neighboring nodes
and also propagates the information of a node to
its nearest neighbors. Shown in Fig. 1, by stacking
GCN layers, GCN can extract regional features for
each node.

A GCN layer retrieves new node features by
considering neighboring nodes’ features with the
following equation:

hl+1
u = ReLU

 ∑
v∈N(u)

(
W lhlv + bl

) ,

where u is the target node andN (u) represents the
neighborhood of u, including u itself; hlv denotes
the hidden feature of node v at layer l;W and b are
learnable weights, mapping the feature of a node
onto adjacent nodes in the graph; and h ∈ Rf ,
W ∈ Rf×f , and b ∈ Rf , where f is the feature
size.

4 Methodology

The overall architecture of the proposed GraphRel
which contains 2 phases prediction is illustrated
in Fig. 2. In the 1st-phase, we adopt bi-RNN and
GCN to extract both sequential and regional de-
pendency word features. Given the word features,
we predict relations for each word pair and the en-
tities for all words.

Then, in 2nd-phase, based on the predicted
1st-phase relations, we build complete relational

graphs for each relation, to which we apply GCN
on each graph to integrate each relation’s informa-
tion and further consider the interaction between
entities and relations.

4.1 1st-phase Prediction
As the state-of-the-art text feature extractor
(Marcheggiani and Titov, 2017; Cetoli et al.,
2016), to take into account both sequential and re-
gional dependencies, we first apply bi-directional
RNN to extract sequential features and then use bi-
directional GCN to further extract regional depen-
dency features. Then, based on the extracted word
features, we predict the relation for each word pair
along with the word entity.

4.1.1 Bi-LSTM
We use the well-known long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) as
our bi-RNN cell. For each word, we combine the
word embedding and part-of-speech (POS) em-
bedding as the initial feature:

h0u =Word(u)⊕ POS(u),

where h0u represents the initial feature of word u,
and Word(u) and POS(u) are the word and POS
embedding of word u, respectively. We use pre-
trained word embeddings from GloVe (Pennington
et al., 2014), and the POS embedding is randomly
initialized for training with the whole GraphRel.

4.1.2 Bi-GCN
Since the original input sentence is a sequence and
has no inherent graph structure to speak of, as Ce-
toli et al. (2016), we use dependency parser to cre-
ate a dependency tree for the input sentence. We
use the dependency tree as the input sentence’s ad-
jacency matrix and use GCN to extract regional
dependency features.

The original GCN was designed for undirected
graphs. To consider both incoming and outgoing
word features, we follow Marcheggiani and Titov
(2017) and implement bi-GCN as

→
hl+1
u = ReLU

 ∑
v∈
→
N(u)

(
→
W

l
hlv+

→
b
l
)

←
hl+1
u = ReLU

 ∑
v∈
←
N(u)

(
←
W

l
hlv+

←
b
l
)

hl+1
u =

→
hl+1
u ⊕

←
hl+1
u ,



Figure 2: Overview of GraphRel with 2nd-phase relation-weighted GCN.

where hlu represents the hidden features of word u

at layer l,
→
N (u) contains all words outgoing from

word u, and
←
N (u) contains all words incoming to

word u, both including word u itself. W and b are
both learnable convolutional weights.

→
W ,

→
b and

←
W ,

←
b also represent the outgoing weight and in-

coming weight, respectively. We concatenate both
outgoing and incoming word features as the final
word feature.

4.1.3 Extraction of Entities and Relations
With the extracted word features from bi-RNN and
bi-GCN, we predict the word entity and extract
the relation for each word pair. For the word en-
tity, we predict for all words according to the word
features over 1-layer LSTM and apply categorical
loss, denoted as eloss1p, to train them.

For relation extraction, we remove the depen-
dency edges and do prediction for all word pairs.
For each relation r, we learn weight matrices W 1

r ,
W 2

r , W 3
r and calculate the relation tendency score

S as

S(w1,r,w2) =W 3
rReLU

(
W 1

r hw1 ⊕W 2
r hw2

)
,

where S(w1,r,w2) represents the relation tendency
score for (w1, w2) under relation r and (w1, w2)
refers to the word pair. Note that S(w1,r,w2)

should be different from S(w2,r,w1). For word
pair (w1, w2), we calculate all of the pair’s rela-
tion tendency scores, including non-relation, and
denote it as S(w1,null,w2). We apply the soft-
max function to S(w1,r,w2), yielding Pr(w1, w2),
which represents the probability of each relation r
for (w1, w2).

Since we extract relations for each word pair,
our design includes no triplet count restrictions.
By investigating the relations for each word pair,

Figure 3: Relation-weighted graph for each relation.

GraphRel identifies as many relations as possi-
ble. With Pr(w1, w2), we can also calculate the
relation categorical loss here, denoted as rloss1p.
Please note that though both eloss1p and rloss1p

will not be used as final prediction, they are
also good auxiliary loss for training 1st-phase
GraphRel.

4.2 2nd-phase Prediction

The extracted entities and relations in 1st-phase do
not take each other into account. To consider inter-
action between named entities and relations, and
to take account implicit features among all word
pairs of the text, we present a novel 2nd-phase
relation-weighted GCN for further extraction.

4.2.1 Relation-weighted Graph

After 1st-phase prediction, we build complete
relation-weighted graph for each relation r where
the edge of (w1, w2) is Pr(w1, w2), as shown in
Fig. 3.

Then, 2nd-phase adopts bi-GCN on each re-
lation graph which considers different influenced
degrees of different relations and aggregates as the
comprehensive word feature. The process can be



represented as

hl+1
u = ReLU

(∑
v∈V

∑
r∈R

Pr (u, v)×
(
W l

rh
l
v + blr

))
+hlu,

where Pr(u, v) represents the edge weight (the
probability of word u to word v under relation
r). Wr and br means the GCN weight under re-
lation r. V includes all words and R contains
all relations. Note that the complete bi-GCN also
takes both the incoming and outgoing situations
into account. The bi-GCN in 2nd-phase further
considers the relation-weighted propagations and
extracts more sufficient features for each word.

With the newer word features from 2nd-phase,
we perform named entity and relation classifica-
tion again for more robust relation prediction. The
losses for these are denoted as eloss2p and rloss2p.

4.3 Training Detail
We use two kinds of loss in GraphRel: entity loss
and relation loss, both of which belong to cate-
gorical loss. For entity loss, we use the conven-
tional (Begin, Inside, End, Single, Out) tagging
for the ground-truth labels. Each word belongs to
one of the five classes. The ground-truth entity la-
bel for eloss1p and eloss2p are the same; we use
cross-entropy as the categorical loss function dur-
ing training.

For relation loss, we feed in a one-hot relation
vector as the ground truth of Pr(w1, w2) for each
word pair (w1, w2). Since we predict relations
based on word pairs, the ground truth should like-
wise be based on word pairs. That is, word United
has a HasPresident relation to both word Barack
and word Obama, as does word States. We be-
lieve that this word-pair-based relation represen-
tation provides GraphRel with the information it
needs to learn to extract relations. The ground-
truth relation vector for rloss1p and rloss2p are the
same. As entity loss, we also use cross-entropy as
the categorical loss function during training.

For both eloss and rloss, we add an additional
double-weight for those in-class entity or relation
terms. Finally, the total loss is calculated as the
sum of all entity loss and relation loss:

lossall = (eloss1p + rloss1p) + α (eloss2p + rloss2p) ,

where α is a weight between loss of 1st-phase
and 2nd-phase. We minimize lossall and train the
whole GraphRel in an end-to-end manner.

4.4 Inference

During inference, the baseline prediction method
is head prediction, where a relation triplet such as
(BarackObama, PresidentOf, UnitedStates) is ex-
tracted if and only if BarackObama, UnitedStates
are both identified as entity mentions and Presi-
dentOf is the most probable class of P(Obama,States).

Another baseline extraction method that might
be more stable is average prediction, where all
word pairs between an entity mention pair are
taken into account and decide a relation with max-
imum averaged probability.

Finally, we propose a threshold prediction
method, where all word pairs of an entity men-
tion pair are still taken into account but in an in-
dependent fashion. For example, if 2 of the 4 dis-
tributions have PresidentOf as the most probable
class, then the triplet (BarackObama, PresidentOf,
UnitedStates) is extracted only if 2/4 = 50% > θ
where θ is a free threshold parameter. This way,
users can select their preferred precision and re-
call trade-off by adjusting θ. In the experiments,
if not specified, threshold inference with θ = 0 is
used.

5 Experiments

In this section, we present the experimental results
of the proposed GraphRel. We first describe im-
plementation details, the datasets, and the base-
lines we compare with. Then we show the quan-
titative results for two datasets, conduct detailed
analyses, and different categories of named enti-
ties. Finally, we demonstrate the improved effect
of 2nd-phase via a case study.

5.1 Experimental Settings

In our implementation, we chose the pre-trained
GloVe (300d) as a fixed word embedding. The
word embedding was then concatenated with a
trainable POS embedding (15d) as the final input
embedding for each word. The POS tag for each
word and the dependency tree for whole sentences
was retrieved from spaCy (Honnibal and Johnson,
2015).

We use bi-LSTM with 256 units and 2-layer
bi-GCN with 256 feature size in 1st-phase. For
the 2nd-phase, the relation-weighted bi-GCN is
1-layer, also with a feature size of 256. During
training, we set the LSTM dropout rate to 0.5, the
learning rate to 0.0008, and the loss weight α to
3. We train GraphRel using the Adam (Kingma



Method
NYT WebNLG

Precision Recall F1 Precision Recall F1
NovelTagging 62.4% 31.7% 42.0% 52.5% 19.3% 28.3%
OneDecoder 59.4% 53.1% 56.0% 32.2% 28.9% 30.5%

MultiDecoder 61.0% 56.6% 58.7% 37.7% 36.4% 37.1%
GraphRel1p 62.9% 57.3% 60.0% 42.3% 39.2% 40.7%
GraphRel2p 63.9% 60.0% 61.9% 44.7% 41.1% 42.9%

Table 1: Results for both NYT and WebNLG datasets.

Category
NYT WebNLG

Train Test Train Test
Normal 37013 3266 1596 246

EPO 9782 978 227 26
SEO 14735 1297 3406 457
All 56195 5000 5019 703

#Relation 24 246

Table 2: Statistics of dataset.

and Ba, 2015) optimizer and implement it under
PyTorch.

5.1.1 Dataset
We use the NYT (Riedel et al., 2010) and
WebNLG (Gardent et al., 2017) datasets to eval-
uate the proposed method. As NovelTagging and
MultiDecoder, for NYT, we filter sentences with
more than 100 words and for WebNLG, we use
only the first sentence in each instance in our ex-
periments. The statistics of NYT and WebNLG is
described in Table. 2.

We divided relation triplets into three cate-
gories: Normal, EntityPairOverlap (EPO), and
SingleEntityOverlap (SEO). The counts for each
category are also shown in Table 2. Since one en-
tity belonged to several different relations, Entity-
PairOverlap and SingleEntityOverlap were more
difficult tasks. We discuss the result for different
categories in the detailed analysis.

5.2 Baseline and Evaluation Metrics

We compared GraphRel with two baselines: Nov-
elTagging (Zheng et al., 2017) and MultiDe-
coder (Zeng et al., 2018). NovelTagging is a se-
quence tagger which predicts both entity and rela-
tion classes for each sentence word. MultiDecoder
is a state-of-the-art method that considers relation
extraction as a seq-seq problem and uses dynamic
decoders to extract relation triplets. The results for
both baselines come directly from the original pa-

pers.
As two baselines, we adopted the standard F1

score to evaluate the results. The predicted triplets
were seen as correct if and only if the relation and
the head of the two corresponding entities were the
same as the ground truth.

5.3 Quantitative Results

Table 1 presents the precision, recall, and F1 score
of NovelTagging, MultiDecoder, and GraphRel
for both the NYT and WebNLG datasets. OneDe-
coder, proposed in MultiDecoder’s original pa-
per, uses only a single decoder to extract relation
triplets. GraphRel1p is the proposed method but
only 1st-phase, and GraphRel2p is the complete
version, which predicts relations and entities after
the 2nd-phase.

For the NYT dataset, we see that GraphRel1-hop
outperforms NovelTagging by 18.0%, OneDe-
coder by 4.0%, and MultiDecoder by 1.3% in
terms of F1. As it acquires both sequential and
regional dependency word features, GraphRel1-hop
performs better on both precision and recall, re-
sulting in a higher F1 score. With relation-
weighted GCN in 2nd-phase, GraphRel2p, which
considers interaction between name entities and
relations, further surpasses MultiDecoder by 3.2%
and yields a 1.9% improvement in comparison
with GraphRel1p.

Similar results can be found on the WebNLG
dataset: GraphRel1p outperforms baseline F1
scores by 3.6%, and GraphRel2p further improves
2.2% upon GraphRel1p. From the NYT and
WebNLG results, we show that GCN’s regional
dependency feature and 2nd-phase prediction both
aid relation prediction in terms of precision, recall,
and F1 score.

NovelTagging and MultiDecoder both use a se-
quential architecture. As NovelTagging assumes
that an entity belongs to a single relation, preci-
sion is high but recall is low. MultiDecoder uses a



Figure 4: Results (F1 score) by named entity category.

Figure 5: Results (F1 score) by sentence triplet count.

dynamic decoder to generate relation triplets. Be-
cause of the innate restrictions on RNN unrolling,
the number of triplets it can generate is limited.
However, for GraphRel, as we predict relations for
each word pair, we are free of that restriction. We
believe that GraphRel is the most balanced method
as it maintains both high precision and high recall,
yielding higher F1 scores.

5.4 Detailed Analysis

To further analyze the proposed GraphRel, we
present the results under different types of triplets,
different inference methods, the improvement
over name entity recognition, and different num-
bers of GCN layer used.

5.4.1 Different Types of Triplets
We first investigate the results under different en-
tity categories. Fig. 4 presents the results for both
NYT and WebNLG datasets.

For GraphRel, as we predict relations for all
word pairs, all words can have relations with
other words: thus entity overlap is not a problem.
Though MultiDecoder tries to use a dynamic de-

coder, the result shows that GraphRel surpasses
them in all entity categories. For instance, on the
WebNLG dataset, GraphRel1p outperforms Mul-
tiDecoder by 3.5% on the normal class, 2.9% on
the EPO class, and 3.4% on the SEO class. And
GraphRel2p further improves GraphRel1p for each
class.

We also compare the results given different
numbers of triplets in a sentence, as illustrated as
Fig. 5. The x-axis represents 1, 2, 3, 4, or more
than 5 triplets in a sentence. Because of the sin-
gle decoder, OneDecoder performs well for sin-
gle triplets, but performance drops drastically for
more triplets in a sentence. As with the experiment
for different entity categories, GraphRel1p and
GraphRel2p both outperform the baselines under
all numbers of triplets in a sentence. GraphRel1p
outperforms MultiDecoder by 7.5% for more than
5 triplets in a sentence and GraphRel2p further sur-
passes MultiDecoder by 11.1% on NYT.

5.4.2 Inference Methods

We compare the two baseline inference methods,
head and average, and the threshold method under



Sentence GraphRel1p GrapRel2p

Agra Airport is in India where (Agra Airport, location, India) (Agra Airport, location, India)
one of its leaders is Thakur. (India, leader name, Thakur) (India, leader name, Thakur)

In Italy, the capital is Rome and (Italy, captical, Rome) (Italy, captical, Rome)
A.S. Gubbio 1910 is located there. (A.S. Gubbio 1910, ground, Italy)
Asam pedas (aka Asam padeh) is (Asam pedas, alias, Asam padeh) (Asam pedas, alias, Asam padeh)

from the Sumatra and Malay (Asam pedas, region, Malay Peninsula) (Asam pedas, region, Malay Peninsula)
Peninsula regions of Malaysia. (Asam pedas, country, Malaysia) (Asam padeh, region, Malay Peninsula)

(Asam pedas, country, Malaysia)
(Asam padeh, country, Malaysia)

Table 3: Case Study for Graph1p and GraphRel2p.

Figure 6: Results by different decision thresholds.

Method NYT WebNLG
GraphRel1p 88.8% 89.1%
GraphRel2p 89.2% 91.9%

Table 4: F1 score of entity recognition for GraphRel.

different θ. Fig. 6 shows their results when applied
to GraphRel2p on NYT and WebNLG.

It can be seen that the threshold inference
method efficaciously adjusts the trade-off between
precision and recall with different choices of θ. By
reducing the threshold from θ = 0.8 to θ = 0, the
recall is significantly increased by 1.8% and 1.4%
respectively on NYT and WebNLG, with only a
marginal 0.6% loss of precision. The effective-
ness of the proposed threshold method then leads
to the best performance on both datasets, surpass-
ing both the head and average ones.

5.4.3 Improvement over Entity Recognition
and Different Numbers of GCN Layer

From Table. 4, GraphRel2p can surpass 1st-phase
by 0.4% and 2.8% for entity recognition on both
NYT and WebNLG. It also shows that 2nd-phase
relation-weighted GCN is effective on not only re-
lation extraction but also name entity recognition.

To confirm that our 2-layer 1st-phase added 1-
†#GCN layer in 1st-phase set to 2.
‡#GCN layer in 1st-phase and 2nd-phase set to 2 and 1.

Phase #GCN layer NYT WebNLG

1st-phase
2 60.0% 40.7%
3 60.0% 40.5%

2nd-phase†
1 61.9% 42.9%
2 61.6% 42.4%

3rd-phase‡ 1 61.8% 42.7%

Table 5: F1 score by different numbers of GCN layer.

layer 2nd-phase is the best setting, we investigate
the result of different numbers of GCN layer used
in both 1st-phase and 2nd-phase. Table. 5 presents
the results of using 3 GCN layers for 1st-phase and
2 layers of relation-weighted GCN for 2nd-phase.
However, it shows that more GCN layers can not
bring out better prediction and our (2, 1) layer set-
ting should be the most suitable one for relation
extraction task.

We also experiment on 3rd-phase method,
adopting relation-weighted GCN again where the
graph is based on 2nd-phase’s predicited rela-
tions. And it shows that our 2nd-phase is sufficient
enough for relation extraction.

5.5 Case Study

Table. 3 shows the case study of our proposed
GraphRel. The first sentence is an easy case and
both GraphRel1p and GraphRel2p can extract ac-
curately. For the second case, although there does
not belong to name entity, it should contain the
hidden semantic of Italy. Therefore, 2nd-phase
can further predict that A.S. Gubbio 1910 grounds
in Italy. The third case is an SEO class in which
GraphRel1p discovers that Asam pedas is the same
as Asam padeh, thus the latter should also locate
in Malay Peninsula and come from Malaysia.

6 Conclusion

In this paper, we present GraphRel, an end-to-
end relation extraction model which jointly learns



named entities and relations based on graph con-
volutional networks (GCN). We combine RNN
and GCN to extract not only sequential features
but also regional dependency features for each
word. Implicit features among all word pairs of
the text are also considered in our approach. We
predict relations for each word pair, solving the
problem of entity overlapping. Furthermore, we
introduce a novel relation-weighted GCN that con-
siders interactions between named entities and re-
lations. We evaluate the proposed method on the
NYT and WebNLG datasets. The results show that
our method outperforms previous work by 3.2%
and 5.8% and achieves a new state-of-the-art for
relation extraction.
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