An Empirical Study of End-to-End Video-Language Transformers with Masked Visual Modeling

Tsu-Jui Fu¹

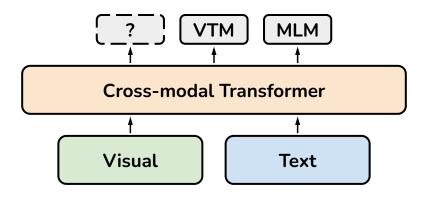
Linjie Li²

Zhe Gan³

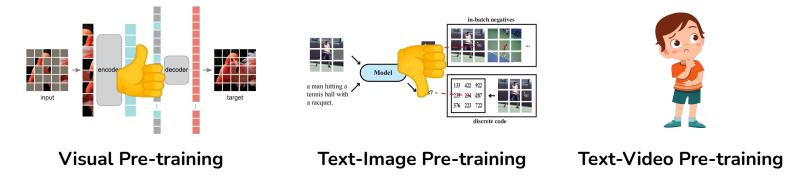
 ${\rm Kevin}\ {\rm Lin}^2$

Zicheng Liu²

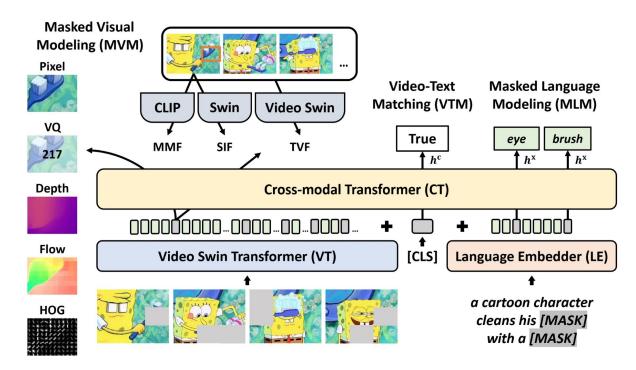
¹UC Santa Barbara, ²Microsoft, ³Apple



https://tsujuifu.github.io


Large-scale Text-Visual Pre-training

- Masked Language Modeling (MLM): recover missing word tokens
- Visual-Text Matching (VTM): alignment between visual and textual inputs
- How to enhance the visual modality ?


Mask Visual Modeling (MVM)

- MVM achieves promising results for self-supervised visual pre-training
 MAE, BEiT, VideoMAE, ...
- In contrast, MVM even hurts performance on text-image pre-training
- How can we design effective MVM for text-video pre-training?

Diverse Targets of MVM

- Explore various MVM targets for end-to-end VidL learning
 - Low-level: Pixel, HOG
 - Semantic-level: Depth, Flow, SIF, TVF
 - Multi-modal: VQ, MMF

MVM on Text-Video (WebVid-2.5M)

- Not all MVMs are helpful for VidL
- Only **Pixel** and **SIF** bring consistent improvement on both downstream tasks
- **SIF** gains significant advance, especially on T2V

Pre-train	MVM	TGIF-Frame	DiDeMo-Retrieval						
Pre-train		Accuracy	R1	R5	R10	AveR			
VTM+MLM	None	68.1	28.7	57.0	69.7	51.8			
-	Pixel	68.3 (+0.2)	29.2 (+0.5)	58.6 (+1.6)	70.1 (+0.4)	52.6 (+0.8)			
	HOG	67.3 <mark>(-0.8)</mark>	26.6 <mark>(-2.1)</mark>	54.9 (-2.1)	68.1 <mark>(-1.6)</mark>	49.8 <mark>(-2.0)</mark>			
	Depth	68.0 <mark>(-0.1)</mark>	27.3 (-1.4)	55.0 <mark>(-2.0)</mark>	68.3 (-1.4)	50.2 <mark>(-1.6)</mark>			
+ N <i>A</i> \ / N <i>A</i>	Flow	67.6 <mark>(-0.5)</mark>	30.3 (+1.6)	58.0 (+1.0)	70.3 (+0.6)	52.9 (+1.1)			
+MVM	SIF	68.8 (+0.7)	35.4 (+6.7)	62.4 (+5.4)	74.9 (+5.2)	57.6 (+5.8)			
	TVF	68.0 (-0.1)	32.8 (+4.1)	60.5 (+3.5)	73.0 (+3.3)	55.4 (+3.6)			
	VQ	68.4 (+0.3)	28.1 (-0.6)	56.6 (-0.4)	69.4 (-0.3)	51.3 <mark>(-0.5)</mark>			
	MMF	67.7 <mark>(-0.4)</mark>	29.8 (+1.1)	57.8 (+0.8)	68.5 <mark>(-1.2)</mark>	52.1 (+0.3)			

Combination of MVM targets on Text-Video

- Joint of different MVMs is **not encouraging**
- Explicit Pixel conflicts with high-level SIF
- SIF+TVF cannot bring more improvement (T2V \downarrow)

MVM	TGIF-Frame	DiDeMo-Retrieval							
	Accuracy	R1	R5	R10	AveR				
None	68.1	28.7	57.0	69.7	51.8				
Pixel	68.3 (+0.2)	29.2 (+0.5)	58.6 (+1.6)	70.1 (+0.4)	52.6 (+0.8)				
Flow	67.6 <mark>(-0.5)</mark>	30.3 (+1.6)	58.0 (+1.0)	70.3 (+0.6)	52.9 (+1.1)				
SIF	68.8 (+0.7)	35.4 (+6.7)	62.4 (+5.4)	74.9 (+5.2)	57.6 (+5.8)				
TVF	68.0 <mark>(-0.1)</mark>	32.8 (+4.1)	60.5 (+3.5)	73.0 (+3.3)	55.4 (+3.6)				
SIF+Pixel	68.8 (+0.7)	31.8 (+3.1)	60.4 (+3.4)	73.0 (+3.3)	55.1 (+3.3)				
SIF+Flow	68.7 (+0.6)	34.4 (+5.7)	61.5 (+4.5)	72.8 (+3.1)	56.3 (+4.5)				
SIF+TVF	69.2 (+1.1)	33.8 (+5.1)	63.0 (+6.0)	74.4 (+4.7)	57.1 (+5.3)				

MVM on Text-Image (CC3M)

- Challenging to learn without visual implications from neighbor frames
- Fit in static image, which hurts video temporal
- MVM cannot work well on text-image data for VidL

Pre-train	MVM	TGIF-Frame	DiDeMo-Retrieval						
Fie-ualli		Accuracy	R1	R5	R10	AveR			
VTM+MLM	None	69.8	36.4	64.3	74.7	58.4			
	Pixel	69.7 <mark>(-0.1)</mark>	35.8 (-0.6)	64.4 (+0.1)	74.9 (+0.2)	58.4			
	HOG	69.8	34.9 (-1.5)	64.4 (+0.1)	75.1 (+0.4)	58.1 <mark>(-0.3)</mark>			
+MVM	Depth	69.6 <mark>(-0.2)</mark>	32.3 (-4.1)	63.8 <mark>(-0.5)</mark>	74.2 <mark>(-0.5)</mark>	56.9 <mark>(-1.5)</mark>			
+1010101	SIF	69.7 <mark>(-0.1)</mark>	31.6 (-4.8)	60.5 <mark>(-3.8)</mark>	72.5 <mark>(-2.2)</mark>	54.9 <mark>(-3.5)</mark>			
	VQ	69.8	34.4 (-2.0)	62.6 (-1.7)	75.1 (+0.4)	57.4 (-1.0)			
	MMF	69.8	33.6 <mark>(-2.8)</mark>	62.9 (-1.4)	75.6 (+0.9)	57.4 <mark>(-1.0)</mark>			

MVM on Text-Image & Text-Video

- Not trivial to find superior MVM combination
- Video (SIF) + Image (None) is our default setting

Pre-train -	MVM		TGIF-Frame	DiDeMo-Retrieval				
	WebVid	ССЗМ	Accuracy	R1	R5	R10	AveR	
VTM+MLM	None		69.7	36.7	66.5	76.6	59.9	
	SIF	None	71.1 (+1.4)	38.8 (+2.1)	69.6 (+ 3 .1)	80.0 (+3.4)	62.8 (+2.9)	
+MVM	SIF	Pixel	71.3 (+1.6)	39.7 (+3.0)	69.3 (+2.8)	78.4 (+1.8)	62.5 (+2.6)	

SIF Extractor vs. Downstream

- Classification accuracy is crucial but **not positively correlated**
- Similar inductive biases is another key
- Trade-off between informative and feasible learning

SI	SIF IN-1K		TGIF-Frame	DiDeMo-Retrieval				
Model	Train	Accuracy	Accuracy	R1	R5	R10	AveR	
	None		68.1	28.7	57.0	69.7	51.8	
Res-50	IN-1K	76.1	67.3 <mark>(-0.8)</mark>	29.1 (+0.4)	58.1 (+1.1)	69.3 <mark>(-0.4)</mark>	52.2 (+0.4)	
Swin-T	IN-1K	81.2	68.9 (+0.8)	33.8 (+5.1)	63.6 (+6.6)	74.2 (+4.5)	57.2 (+5.4)	
DeiT	IN-1K	83.4	68.4 (+0.3)	31.4 (+2.7)	59.4 (+2.4)	72.2 (+2.5)	54.3 (+2.5)	
Swin-B	IN-1K	83.5	68.3 (+0.2)	34.9 (+6.2)	63.4 (+6.4)	73.9 (+4.2)	57.4 (+5.6)	
Swin-B	IN-22K	85.2	68.8 (+0.7)	35.4 (+6.7)	62.4 (+5.4)	74.9 (+5.2)	57.6 (+5.8)	
Swin-L	IN-22K	86.3	68.2 (+0.1)	33.2 (+4.5)	62.4 (+5.4)	72.6 (+2.9)	56.1 (+4.3)	

Comparison with SOTA

• Video Question Answering (VideoQA)

Method	#Pre-train	#Dro train	#Bro train		TGIF		MSF	RVTT	LSN	1DC	MSVD
	#Fle-train	Act.	Trans.	Frame	МС	QA	МС	FiB	QA		
ClipBERT	0.2M	82.8	87.8	60.3	88.2	37.4	-	-	-		
ALRPO	5M	-	-	-	-	42.1	-	-	46.3		
JustAsk	69M	-	-	-	-	41.5	-	-	46.3		
MERLOT	180M	94.0	96.2	69.5	90.9	43.1	81.7	52.9	-		
VIOLET	186M	92.5	95.7	68.9	91.9	43.9	82.8	53.7	47.9		
All-in-One	283M	95.5	94.7	66.3	92.3	46.8	84.4	-	48.3		
VIOLETv2	5M	94.8	99.0	72.8	97.6	44.5	84.4	56.9	54.7		

Comparison with SOTA

• Text-to-Video Retrieval (T2V)

Method	#Dro train	#Pre-train			DiDeMo		LSMDC			
	#Pre-train	R1	R5	R10	R1	R5	R10	R1	R5	R10
ClipBERT	0.2M	22.0	46.8	59.9	20.4	48.0	60.8	-	-	-
Frozen	5M	31.0	59.5	70.5	31.0	59.8	72.8	15.0	30.8	39.8
ALPRO	5M	33.9	60.7	73.2	35.9	67.5	78.8	-	-	-
B-Former	5M	37.6	64.8	75.1	37.0	62.2	73.9	17.9	35.4	44.5
All-in-One	138M	37.9	68.1	77.1	32.7	61.4	73.5	-	-	-
VIOLET	186M	34.5	63.0	73.4	32.6	62.8	74.7	16.1	36.6	41.2
Clip4Clip	400M	42.1	71.9	81.4	43.4	70.2	80.6	21.6	41.8	49.8
VIOLETv2	5M	37.2	64.8	75.8	47.9	76.5	84.1	24.0	43.5	54.1

Summary

- Explore various MVM targets for VidL learning
 - Low-level: **Pixel**, HOG
 - Semantic-level: Depth, Flow, **SIF**, TVF
 - Multi-modal: VQ, MMF
- Best setting should be Text-Video (SIF) + Text-Image (None)
 - \circ \quad Not trivial to find superior combination of MVM
- Features extractor is also crucial
 - Classification accuracy is **not always positively correlated**
 - Similar inductive biases is the key
 - Trade-off between informative and feasible learning

