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Abstract

Incremental decision making in real-world environments is
one of the most challenging tasks in embodied artificial intel-
ligence. One particularly demanding scenario is Vision and
Language Navigation (VLN) which requires visual and nat-
ural language understanding as well as spatial and temporal
reasoning capabilities. The embodied agent needs to ground
its understanding of navigation instructions in observations
of a real-world environment like Street View. Despite the im-
pressive results of LLMs in other research areas, it is an on-
going problem of how to best connect them with an interac-
tive visual environment. In this work, we propose VELMA,
an embodied LLM agent that uses a verbalization of the tra-
jectory and of visual environment observations as contextual
prompt for the next action. Visual information is verbalized
by a pipeline that extracts landmarks from the human written
navigation instructions and uses CLIP to determine their vis-
ibility in the current panorama view. We show that VELMA
is able to successfully follow navigation instructions in Street
View with only two in-context examples. We further finetune
the LLM agent on a few thousand examples and achieve 25%-
30% relative improvement in task completion over the previ-
ous state-of-the-art for two datasets.

1 Introduction
Large language models (LLMs), which have shown impres-
sive reasoning capabilities in traditional natural language
processing tasks, are increasingly used as the reasoning en-
gine of embodied agents for, e.g., household robots (Shrid-
har et al. 2020), video games (Wang et al. 2023) and in-
door navigation (Zhou, Hong, and Wu 2023). These tasks are
mostly based on simulations that either feature computer-
generated images with a fixed set of displayable objects and
textures, or are limited in scale and trajectory length. In this
paper, we present a verbalization embodiment of an LLM
agent (VELMA) for urban vision and language navigation
in Street View. The unique challenge of this task is the com-
bination of a large-scale environment derived from an actual
road network, real-world panorama images with dense street
scenes, and long navigation trajectories. The agent needs to
ground its understanding of the navigation instructions in
the observable environment and reason about the next action
to reach the target location. The navigation instructions are

"Orientate yourself such that a blue bench is on your right, go to the 
end of the block and make a right. Follow the park on your left and make 
a right at the next intersection. Pass the black fire hydrant on your 
right and stop when you get to the gray door on the brown building."

There is a blue bench on your left.
1. turn_around
There is a blue bench on your right.
2. forward
3. forward
4. forward
There is a 3-way intersection.
5. right
6. forward
There is a park on your left.
7. forward
There is a park on your left.
8. forward
There is a 4-way intersection.
9. <next word prediction> 

Navigate to the described target location!

Action Space: forward, left, right, turn_around, stop

Navigation Instructions: 

Action Sequence:

Figure 1: Prompt sequence used to utilize LLMs for VLN
in Street View. Verbalized observations of the visual envi-
ronment are in green and appended to the prompt at each
step. Agent actions (blue) are acquired by LLM next word
prediction. Highlighting of text for visual presentation only.
Full navigation trajectories are, on average, 40 steps long.

written by humans and include open-ended landmark refer-
ences and directional indications intended to guide the agent
along the desired path. In order to leverage the reasoning
capabilities of LLMs, we use embodiment by verbalization,
a workflow where the task, including the agent’s trajectory
and visual observations of the environment, is verbalized,
thus embodying the LLM via natural language. Figure 1
shows the verbalization at the ninth step of the current trajec-
tory for a given navigation instance. At each step, the LLM
is prompted with the current text sequence in order to pre-
dict the next action. Then the predicted action is executed
in the environment, and the new observations are verbalized
and appended to the prompt. This is repeated until the agent
eventually predicts to stop.
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The main contributions of our work are as follows:
(i) We introduce VELMA, to our knowledge, the first LLM-
based agent for urban VLN. (ii) We report few-shot results
for the urban VLN task and achieve new state-of-the-art
performance by finetuning our agent on the training set.
(iii) We address and resolve limitations of the commonly
used Touchdown environment (Chen et al. 2019), making
it amenable for few-shot agents.

2 Related Work
Outdoor VLN Agent models for the outdoor/urban VLN
task (Chen et al. 2019) commonly follow a sequence-to-
sequence architecture where encoded text and image repre-
sentations are fused for each decoder step (Xiang, Wang,
and Wang 2020; Mehta et al. 2020; Schumann and Rie-
zler 2022). Other proposed agents employ pretrained vision
and language transformers that are finetuned on task-specific
data (Zhu et al. 2021; Armitage, Impett, and Sennrich 2023).
Other work uses CLIP to score the presence of extracted
landmarks at each panorama node in a graph and uses this
information to plan a route for given navigation instruc-
tions (Shah et al. 2022). Their non-urban environment has
a graph with 300 nodes, and the navigation path is planned a
priori with full access to all panorama images and landmark
scores. In contrast, our agent is embodied and has to plan
ad-hoc with access to directly observed information only.

Indoor VLN Indoor agents (Fried et al. 2018; Wang et al.
2019; Tan, Yu, and Bansal 2019; Fu et al. 2020; Zhu et al.
2020; Qi et al. 2020; Hong et al. 2021; Chen et al. 2021;
Li, Tan, and Bansal 2022) are used for navigation datasets
like R2R (Anderson et al. 2018) and RxR (Ku et al. 2020).
Recently, Zhou, Hong, and Wu (2023) introduced an LLM-
based agent for R2R that incorporates image information by
transcribing its entire content with an image-to-text model.
This is feasible because the navigation trajectories are only
six steps on average compared to 40 steps in the urban VLN
task considered in our work. Another notable indoor VLN
agent uses CLIP to directly predict the next action by scoring
the compatibility of the current sub-instruction with avail-
able waypoint images (Dorbala et al. 2022).

3 Urban VLN Environment
We use the Touchdown environment introduced by Chen
et al. (2019). The environment is based on Google’s Street
View and features 29,641 full-circle panorama images con-
nected by a navigation graph. It covers the dense urban street
network spanning lower Manhattan. The navigation graph is
a directed graph G = ⟨V,E⟩ where each edge ⟨v, v′⟩ ∈ E is
associated with α⟨v,v′⟩ which is the heading direction from
node v to node v′ ranging from 0◦ to 360◦. The agent state
s = (v, α) is composed of its current position v ∈ V and
its heading direction α. The agent can move by executing an
action a ∈ {FORWARD, LEFT, RIGHT, STOP}. The state tran-
sition function st+1 = ϕ(at, st) defines the behavior of the
agent executing an action. In Chen et al. (2019), the agent’s
heading αt at position v is restricted to align with the head-
ing of an outgoing edge α⟨v,v′⟩. In case of the RIGHT action,
the new state st+1 is (v, α⟨v,v⃗⟩) where v⃗ is the neighboring
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Figure 2: The Touchdown environment introduced by Chen
et al. (2019) can require action sequences that are seman-
tically inconsistent with the correct navigation instructions.
In the depicted subgraph, the action sequence to move from
node 1 to node 5 is to move FORWARD four times. The se-
mantically correct sequence of actions would include a right
turn in between. We fix the problem by modifying the envi-
ronment behavior and selecting the desired direction at in-
tersections in relation to all outgoing streets.

node closest to the right of the agent’s current heading. In
other words, the agent is rotated in place to the right until it
snaps to the direction of an outgoing edge. Likewise, for the
LEFT action. In the case of the FORWARD action, the agent
moves along the edge ⟨v, v′⟩ according to its current head-
ing direction αt = α⟨v,v′⟩. The environment is then forced
to automatically rotate the agent’s heading towards an out-
going edge: αt+1 = α⟨v′,v∗⟩ where v∗ is the neighbor node
in the direction closest to the previous heading αt.

3.1 Alignment Inconsistencies in Touchdown
As described in Schumann and Riezler (2022), the auto-
matic rotation mentioned above can lead to generalization
problems, e.g., when moving towards the flat side of a T-
intersection. For example, if the agent is automatically ro-
tated towards the right facing street and subsequently ex-
ecutes the RIGHT action, it rotates towards the direction it
came from instead of clearing the intersection in the in-
tended direction. The same problem also occurs at intersec-
tions with more than three directions. Figure 2 gives an il-
lustrative example that shows the navigation graph at a 4-
way intersection. Because the environment is derived from
a real-world street layout, the nodes in the graph are not
perfectly arranged as in an artificial grid world. In order
to make a right turn at the intersection and to follow the
route from v1 to v5, one expects to use the action sequence
[FORWARD, FORWARD, RIGHT, FORWARD, FORWARD]. However,
when the agent reaches v3, it is automatically rotated to-
wards the closest outgoing edge, in this case, ⟨v3, v4⟩. This
is because the rotation 20◦→50◦ towards v4 is shorter than
the rotation 20◦→345◦ towards v7. As such, the required se-
quence of actions to go from v1 to v5 in Chen et al. (2019)’s
environment is [FORWARD, FORWARD, FORWARD, FORWARD].
This is unpredictable and is not correctly aligned with ”turn



right at the intersection” instructions.1 To alleviate this
problem, Schumann and Riezler (2022) explicitly feed the
change of heading at each timestep as additional input to
their model. This enables the agent to anticipate the unex-
pected rotation and to adapt to it. Because adding heading
delta values to the text-based interface makes it convoluted
and unnecessarily difficult for few-shot learning, we propose
a more intuitive way to solve this ambiguity at intersections.
We modify the state transition function ϕ such that the agent
is not automatically rotated when moving FORWARD. This
means the agent’s heading αt is not automatically aligned
with an outgoing edge. Instead, the direction is selected in
relation to all outgoing edges. The agent at node v3 in Fig-
ure 2 has the nodes v6, v7 and v4 in front. The forward direc-
tion is selected as the middle one of the three edges, the right
direction as the right-most edge, and the left direction as the
left-most edge. This means that executing the RIGHT action
at position v3 will now rotate the agent towards node v4 and
allows to use the semantically correct sequence of actions
for the depicted route. The proposed modification solves the
issue of inconsistent action sequences at intersections and
allows to use agents that are not specifically trained in this
environment.

3.2 Turning Around
We additionally introduce the TURN AROUND action which
lets the agent reverse its direction: st+1 = (v, αt − 180◦).
In the unmodified environment, this is achieved using the
LEFT or RIGHT action on regular street segments. The new
action is better aligned with natural language verbalizations
of direction reversal and promotes intuitive communication
with the environment.

4 Navigation Task
The objective of the navigation task is to find the goal loca-
tion by following the given navigation instructions. A navi-
gation instance is defined by the initial state s1, target node
v̂T , gold path (v̂1, v̂2..., v̂T ) and navigation instructions text
n = (w1, w2, ..., wN ). The agent starts at s1 and predicts the
next action a1 based on the navigation instructions and cur-
rent observations. These are the panorama image and num-
ber of outgoing edges at the current position. The environ-
ment processes the action and puts the agent into a new state:
s2 = ϕ(a1, s1). This is repeated until the agent predicts
STOP at the presumed goal location. If the agent stops within
one neighboring node of the target node, the navigation ob-
jective is considered accomplished.

4.1 Challenges
One main challenge to successfully follow the navigation
instructions is to reliably detect landmarks in the panorama
images along the route. The landmarks mentioned in the
instructions are open-ended and can refer to any object or
structure found in street scenes, including vegetation, build-
ing features, vehicle types, street signs, construction utili-
ties, company logos and store names. The agent also needs

1In Appendix A we show more examples for 3-way, 4-way and
5-way intersections.

Egocentric Spatial Reasoning
1. ... turn so the orange construction barrier is on your left ...
2. ... a red truck in front of you ...
3. ... a playground on the far right corner ahead ...

Allocentric Spatial Reasoning
4. ... green metal pole with pink flowers on top ...
5. ... building with columns around the windows ...
6. ... stop in between Chase and Dunkin’ Donuts ...

Temporal Reasoning
7. ... go straight until you see Chipotle and then ...
8. ... once you passed the underpass ...
9. ... stop when the park on your right ends ...

Other
10. ... proceed straight through three more intersections ...
11. ... you should see TD Bank on your left ...
12. ... if you see Dory Oyster Bar, you have gone too far ...

Table 1: Reasoning skills the embodied LLM agent must
possess in order to successfully complete the navigation
task. Each with three example snippets from the navigation
instructions.

to posses different types of reasoning, most importantly spa-
tial reasoning to follow general directions, locate landmarks
and evaluate stopping conditions. The agent also needs to
understand the temporal aspect of the task and reason about
the sequence of previous observations and actions. See Ta-
ble 1 for example snippets from the navigation instructions.

4.2 Datasets
There are two datasets that provide navigation instruc-
tions for the environment described in Section 3: Touch-
down (Chen et al. 2019) and Map2seq (Schumann and Rie-
zler 2021). Each dataset includes around 10k navigation in-
stances, and we utilize them in the more challenging un-
seen scenario introduced by Schumann and Riezler (2022).
This means that generalization is crucial because the training
routes are located in an area that is geographically separated
from the area of development and test routes. The main dif-
ference between the two datasets is that Touchdown instruc-
tions were written by annotators who followed the route in
Street View, while Map2seq instructions were written by an-
notators that saw a map of the route. The Map2seq naviga-
tion instructions were subsequently validated to also be cor-
rect in Street View. Another difference is that the initial state
in Map2seq orientates the agent towards the correct direc-
tion which leads to overall better task completion rates than
for Touchdown instances.

5 LLM Agent
In this section, we propose the urban VLN agent that uses
an LLM to reason about the next action. To this end, we ver-
balize the navigation task, especially the environment obser-
vations. The workflow includes the extraction of landmarks
that are mentioned in the instructions and determining their
visibility in the current panorama image. The verbalizer then
integrates the visible landmarks and street intersections into



& Heading

Panorama

Environment

Structured Output

{ "landmarks":   { "Starbucks": "right" } }

Landmark Scorer

"picture of a mail truck"

"picture of Starbucks"

1.29 -1.12 -2.27 4.152.85

-0.76 -2.20 1.87 1.982.15

Standardized CLIP Scores (Threshold: 3.5)

Landmark Extractor

Write a list of visible landmarks in 
the navigation instructions:

- Starbucks
- a mail truck

There is a Starbucks on your right.

There is a N-way intersection

Verbalizer
Template Based

Prompt Sequence

Navigate to the described target location!
Action Space: forward, left, right, turn_around, stop
Navigation Instructions: 
"Go straight down the road and turn right at the next 
intersection. Go straight until there is a Starbucks on 
your right and turn left at the following intersection. 
Continue down the block and stop when a mail truck is 
on your left."
Action Sequence:
1. forward
2. forward
There is a 4-way intersection.
4. right
5. forward
6. forward
7. forward
There is a Starbucks on your right.
8. <next word prediction>
...

Observation

Landmarks

Number of Edges

Visible Landmarks

Action

left slightly left ahead slightly right right

Figure 3: Overview of the proposed agent VELMA navigating in the Street View environment. The prompt sequence includes
the task description, navigation instructions, and verbalized navigation trajectory up to the current timestep. The next action is
decided by next word prediction utilizing an LLM and subsequently executed in the environment. This puts the agent into a
new state, and the landmark scorer determines if an extracted landmark is visible in the current panorama view. The verbalizer
takes this landmark information along with the information about a potential intersection and produces the current observations
text. This text is then appended to the prompt sequence and again used to predict the next action. This process is repeated until
the agent stops and the alleged target location.

an observation text phrase ot at each step. The complete text
prompt at timestep t is composed as follows:

xt = [da, n, db, o1, 1, a1, o2, 2, a2, ..., ot, t], (1)

where [ ] denotes string concatenation, da and db are part
of the task description and n is the navigation instructions
text. Punctuation and formatting are omitted in the notation
for brevity. Figure 3 shows a prompt sequence at t = 8 on
the left. This formulation of the navigation task enables the
agent to predict the next action by next word prediction:

at = argmax
w∈A

PLLM (w|xt), (2)

where A are the literals of the five defined actions and PLLM

is a black-box language model with no vision capabilities.

5.1 Landmark Extractor
Each navigation instructions text n mentions multiple land-
marks as visual guidance. In order to determine if a men-
tioned landmark is visible in the current panorama view, we
first have to extract them from the instructions text. For this,
we create a single prompt that includes five in-context ex-
amples of navigation instructions paired with a list of land-
marks (shown in Appendix B). It is used by the LLM to
generate the list of landmarks (l1, l2, ..., lL) mentioned in
the given navigation instructions. The landmark extractor is
depicted in the top middle of Figure 3 and is applied once,
before the navigation starts.

5.2 Landmark Scorer
At each step, the agent observes a panorama view pαv , de-
fined by its current position v and heading direction α. The
view is an 800x460 sized image cut from the panorama with
60◦ field-of-view. In order to determine if a landmark li is

visible in the view, we employ a CLIP model (Radford et al.
2021) to embed the image and the landmark text: ”picture
of [li]”. The similarity score of the two embeddings deter-
mines the visibility of the landmark. Because the scores can
be biased towards certain types of landmarks, we standard-
ize them using all views p∗train of the ∼20k panorama im-
ages in the training area. Recall that we operate in the unseen
scenario where the training area and evaluation area are geo-
graphically separated. The standardized score of a landmark
is:

z(l, pαv ) =
CLIP(l, pαv )− µ(Cl)

σ(Cl)

where Cl = {CLIP(l, pα
′

v′ ) | pα
′

v′ ∈ p∗train}.
(3)

If the standardized score is larger than the threshold τ ,
the landmark is classified as visible in the current view.
There are no ground truth labels indicating whether land-
marks are visible in certain panoramas, thus the classi-
fication is completely unsupervised. The threshold is the
only tunable parameter in the landmark scorer. Figure 4
shows the distribution of unstandardized CLIP scores and
views at different threshold values for two example land-
marks. While the views at τ = 4.0 both show the cor-
rect landmark, the view at τ = 3.0 for ”Bank of Amer-
ica” shows an HSBC branch, and for ”yellow truck” it
shows a white truck. This suggests that the optimal thresh-
old lies between the two values. As depicted on the right
in Figure 3, the agent also evaluates views to the left and
right of the current heading. Each panorama view direction
(pα−90◦

v , pα−45◦

v , pαv , p
α+45◦

v , pα+90◦

v ) is associated with a
string literal m valued left, slightly left, ahead, slightly right
or right, respectively. A visible landmark li and the corre-
sponding direction literal mi are passed to the verbalizer. A
full navigation trajectory includes around 200 image views
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Figure 4: Distribution of CLIP scores between a landmark and panorama images in the training area. The CLIP score repre-
sents the semantic similarity of the panorama image and the text caption ”picture of [landmark]”. The distribution is used to
standardize the score of the landmark and a novel panorama. The threshold τ is defined on the standardized score and used to
determine the visibility of the landmark in the novel panorama image.

(40 steps and 5 view directions per step) and each landmark
is typically visible in only one or two views.

5.3 Verbalizer
The verbalizer is a template-based component that produces
environment observations in text form. There are two types
of environment observations. First, there are street intersec-
tions that are detected based on the number of outgoing
edges N(v) at the current node v in the navigation graph. If
there are three or more outgoing edges at step t, the verbal-
izer encodes this information into the observation string oet :
”There is a [N(v)]-way intersection”. Extracting this infor-
mation directly from the navigation graph is akin to the junc-
tion type embedding used by the ORAR model (Schumann
and Riezler 2022) and motivated by direction arrows dis-
played in the Street View GUI that human navigators used
during data collection. The other type of observations are
landmarks visible in the panorama view. The landmark name
li and direction literal mi are used to verbalize the observa-
tion olt: ”There is [li] on your [mi]”. The complete observa-
tion is ot = [oet , o

l
t], where the respective string is empty if

no intersection or landmark is detected. The observation is
appended to the prompt in Equation 1 and used by the agent
to decide the next action.

6 Experiments
We conducted experiments2 to evaluate the navigation per-
formance of the proposed LLM agent in finetuning and
in-context learning settings. We ran the landmark extrac-
tor once for all instances using GPT-3 (Brown et al.
2020) and used the same extracted landmarks in all ex-
periments. Manual inspection shows that GPT-3 reliably
extracts all landmarks without obvious errors. We used
CLIP-ViT-bigG-14-laion2B-39B-b160k (Schuh-
mann et al. 2022) as the CLIP model in the landmark scorer.
We set the threshold τ = 3.5 for all experiments. The
threshold was selected by inspecting the distribution of CLIP

2Project page: https://map2seq.schumann.pub/vln/velma/ and
code: https://github.com/raphael-sch/VELMA

scores (as in Figure 4) for a handful of landmarks. On pur-
pose, we did not systematically tune it in order to not violate
the premise of few-shot learning.

6.1 Metrics and Baseline
We use three metrics to measure navigation performance.
The task completion (TC) rate is a binary metric that mea-
sures whether the agent successfully stopped within one
neighboring node of the target location. Shortest-path dis-
tance (SPD) calculates the shortest path length between the
stopping location and goal location (Chen et al. 2019). Key
point accuracy (KPA) measures the ratio of correct decisions
at key points. Key points include the initial step, intersec-
tions along the gold route, and the target location.

For baselines, we use the current state-of-the-art agent
model for urban VLN called ORAR (Schumann and Riezler
2022). The model employs a seq-to-seq architecture where
the encoder LSTM reads the navigation instructions text,
and the multi-layer decoder LSTM receives image feature
vectors of the current panorama view as additional input
at each action decoding step. The ORAR model is a very
strong baseline beating more sophisticated models like the
VLN Transformer (Zhu et al. 2021). Because the environ-
ment modifications introduced in Section 3 spare the agents
from learning specific irregularities, we additionally retrain
ORAR in the improved environment for a fair comparison.

6.2 Few-Shot Learning Results
The proposed text-only interface allows us to use large lan-
guage models as reasoners without updating their weights
or fusing image representations. The prompt consists of a
short task description and two in-context examples (2-shot).
The examples are full text sequences for randomly selected
navigation instances in the training set. The plots in Fig-
ure 5 show that performance scales with parameter count as
expected. The FORWARD-baseline reveals that OPT (Zhang
et al. 2022) can barely compete with this baseline yielding
nonsensical predictions, even at model sizes of 65 billion pa-
rameters. The LLaMa model family on the other hand shows
substantial navigation skills reaching 45.7 and 48.7 key



Development Set Test Set
Touchdown Map2seq Touchdown Map2seq

Model SPD↓ KPA↑ TC↑ SPD↓ KPA↑ TC↑ SPD↓ KPA↑ TC↑ SPD↓ KPA↑ TC↑

Seq-to-Seq RNN, full training set
ORAR 20.0 ±0.7 - 15.4 ±2.2 11.9 ±0.4 - 27.6 ±1.8 20.8 ±0.6 - 14.9 ±1.2 13.0 ±0.3 - 30.3 ±1.8

ORAR* 16.5 ±0.1 64.0 ±0.2 22.6 ±0.6 10.3 ±0.4 74.4 ±0.8 29.9 ±1.7 17.4 ±0.2 62.3 ±0.1 19.1 ±1.0 10.9 ±0.1 74.7 ±0.2 32.5 ±1.4

2-Shot In-Context Learning
VELMA-GPT-3 22.2 49.1 6.8 19.1 58.1 9.2 - - - - - -
VELMA-GPT-4 21.8 56.1 10.0 12.8 70.1 23.1 - - - - - -

LLM Finetuning, full training set
VELMA-FT 18.6 ±0.3 61.3 ±0.6 22.6 ±0.4 9.8 ±0.5 76.8 ±0.8 38.2 ±0.5 19.4 ±0.1 60.0 ±0.4 21.0 ±0.2 10.3 ±0.4 76.4 ±0.6 37.8 ±0.9

VELMA-RBL 16.1 ±0.1 63.5 ±0.1 25.7 ±0.4 8.4 ±0.7 78.9 ±0.8 42.8 ±0.6 16.6 ±0.2 61.9 ±0.2 24.1 ±0.7 8.8 ±0.2 77.9 ±0.2 42.1 ±1.1

Table 2: Results for the urban VLN task on Touchdown and Map2seq. ORAR is the previous best model and follows a seq-to-
seq architecture that processes text and image features. ORAR* and following models make use of the improved environment
introduced in Section 3. The proposed environment and workflow allow to perform the urban VLN task as text-only next
word prediction. VELMA-GPT-3 and VELMA-GPT-4 models are prompted with two in-context examples. Due to cost and
data leakage concerns, we evaluate the GPT models on the development sets only. VELMA-FT is based on LLaMa-7b that is
finetuned on all ∼ 6k training text sequences. VELMA-RBL training is described in Section 6.3. All results are for the unseen
scenario where evaluation routes are geographically separated from training routes. Experiments are repeated three times with
different random seeds (mean/std reported). Bold values are the nominal best results and underlined are best few-shot results.
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Figure 5: Key point accuracy (KPA) for 2-shot in-context
learning of large language models with increasing parameter
count. The FORWARD-Baseline predicts only walking forward
and is better than random actions.

point accuracy (KPA) on Touchdown and Map2seq, respec-
tively. However, this KPA score only translates to task com-
pletion (TC) rates of 1.6 and 2.5, revealing that the model
is not able to consistently predict correct actions throughout
the whole navigation trajectory. The only few-shot LLMs
that achieve substantial TC rates are GPT-3 and GPT-4 (Ope-

nAI 2023). As listed in Table 2, VELMA-GPT-4 achieves
the best results for the 2-shot setting. It reaches 44% and
77% of the TC rate reported for the previous state-of-the-
art model ORAR* (Schumann and Riezler 2022) which is
a seq-to-seq model that has direct access to image features
and was trained on the full training set. In contrast, the GPT
models act as a blind agent that solely relies on observation
descriptions produced by the verbalizer. This is remarkable
because LLMs are not explicitly trained to experience em-
bodiment in a visual environment. This is emergent behavior
unearthed by verbalizing the VLN task. We also observe that
the GPT models use the TURN AROUND action in appropri-
ate ways, even when the in-context examples do not demon-
strate the usage of it. This emphasizes the effectiveness of
intuitive communication with the environment.

6.3 Finetuning Results
To further explore the capabilities of the proposed LLM
agent, we finetune LLaMa-7b on all training instances of
the respective dataset, denoted by VELMA-FT in Table 2.
Each training instance is the full text sequence after fol-
lowing the gold path. The visibility of landmarks is deter-
mined by the landmark scorer during training because gold
annotations are not available. There are 6,770 training in-
stances for Touchdown and 5,737 for Map2seq. We finetune
for 20 epochs using LoRA (Hu et al. 2022) to adapt attention
query and value projections. The best model is selected by
task completion on the development set. The resulting agent
outperforms the previous state-of-the-art model ORAR* by
10% and 16% relative TC rate. Comparing ORAR* which
fuses image features at the vector level to VELMA-FT
which finetunes on verbalizations of observations, shows
that the text-based environment observations are less prone
to overfitting.



Algorithm 1: RBL Optimization of Task Completion

Require: mixing ratio λ, training step j, model weights θj ,
gold action sequence â, prompt x1

if random(0, 1) < λ then
aθj = StudentForcing(θj , x1)
aj = argmaxaθj
if TaskCompletion(aj) = 1 then

lossj = LCE(aθj ,aj)
else

a∗j = Oraclestepwise(aj)
lossj = LCE(aθj ,a

∗
j )

end if
else

aθj = TeacherForcing(θj , x1, â)
lossj = LCE(aθj , â)

end if

Response-Based Learning A navigation task is success-
fully completed if the agent stops at either the goal location
or an adjacent neighboring node. Training the agent with
teacher-forcing to exactly follow the gold route penalizes
the agent for stopping one step short or one step past the
target node, despite accomplishing the navigation objective.
Furthermore, the agent can not learn to recover from incor-
rect decisions during inference. We thus train the agent to
directly optimize the TC metric while also feeding it its own
actions during training, called VELMA-RBL in Table 2. The
procedure for VELMA-RBL is inspired by response-based
learning (Clarke et al. 2010) and imitation learning (Ross,
Gordon, and Bagnell 2011) and is outlined in Algorithm 1.
The loss for an instance at training step j is either computed
by teacher forcing the gold action sequence â, or by student
forcing, determined by a mixing parameter λ. In the latter
case, the agent freely moves around, executing the actions
decoded using its current model weights θj . If the agent
successfully stops within one neighboring node of the tar-
get location, the predicted action sequence aj is considered
correct and used as the reference to train the agent. If the
agent stops at the wrong location, an oracle path is com-
puted to provide the optimal counterfactual action at each
step in the trajectory. In our case, the oracle’s optimal next
action is computed as the shortest path to the goal location.
We set λ = 0.5 to collect training losses in a batch evenly
from both training strategies. Manually inspecting trajec-
tories produced by the trained agent, we found improve-
ments of following instructions that have stopping criteria
like ”Stop a few steps before Y.” or ”Stop at X. If you see Y
you have gone too far.”. In both cases, the agent learned to
walk past the uncertain stopping location and to invoke the
TURN AROUND action in order to walk back once landmark
Y appeared. Overall the task completion rate increases sig-
nificantly using this training procedure with 15% and 11%
relative improvements for Touchdown and Map2seq respec-
tively. Overall, our contributions in this work amount to an
absolute increase of task completion by 9.2 and 11.8 over
the previously reported state-of-the-art.

Touchdown Map2seq
Image Model SPD↓ KPA↑ TC↑ SPD↓ KPA↑ TC↑
no image 27.4 45.5 14.7 9.7 76.4 35.2
CLIP 21.3 57.4 19.5 9.8 76.9 37.2
OpenCLIP 18.6 61.3 22.6 9.8 76.8 38.2

Table 3: Vision ablation on the development set. We
finetune a separate LLaMa-7b model for each ablation.
CLIP refers to clip-vit-large-patch14 (Radford
et al. 2021). The OpenCLIP image model refers to
CLIP-ViT-bigG-14-laion2B-39B-b160k (Schuh-
mann et al. 2022).

6.4 Image Ablation

In this section, we ablate the image model used by the land-
mark scorer. We finetune a LLaMa-7b model according to
Section 6.3 and use CLIP (Radford et al. 2021), Open-
CLIP (Schuhmann et al. 2022) or no image model in the
landmark scorer. The latter case means that no landmark
observation is passed to the prompt sequence. The results
in Table 3 show that OpenCLIP is better suited for detect-
ing landmarks in our navigation task than the original CLIP
model. This is in line with better ImageNet results reported
by the OpenCLIP authors and suggests that the agent can
directly benefit from further improvements of CLIP models.
Appending no landmarks to the prompt sequence further de-
grades performance, especially on Touchdown.

7 Conclusion

We introduced VELMA, an agent for urban vision and lan-
guage navigation, which utilizes a large language model to
infer its next action. The LLM is continuously queried with
a text prompt that verbalizes the task description, navigation
instructions, visual observations, and past trajectory of the
agent. In order to include observed landmarks in the prompt,
we propose an unsupervised pipeline that extracts landmarks
from the instructions and determines their visibility in the
current panorama view based on thresholded CLIP scores.
We evaluate the embodied LLM agent in a modified ver-
sion of the commonly used Touchdown environment based
on Street View. One proposed modification is fixing a prob-
lem at intersections that led to incorrect alignments of action
sequences, and another modification adds the TURN AROUND
action which provides a more intuitive way to communicate
with the environment. The proposed agent achieves strong
few-shot in-context learning results of 10 and 23 task com-
pletion rates for Touchdown and Map2seq, respectively, and
yields new state-of-the-art results of 24 and 42 task comple-
tion rates when finetuned on the full training set.
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A Modified Environment
In Section 3.1 we propose modifications to the environment
introduced by Chen et al. (2019). In Table 4 we give an
overview of action sequences required to clear 3-way, 4-way
and 5-way intersections in different directions in the original
environment implementation and our modified environment.
It is clear that the action sequences required in our improved
environment are more intuitive and are necessary to enable
few-short agents to interact with it.

B Landmark Extraction
The landmarks mentioned in the navigation instructions are
extracted before the run starts. We do this by a separate
prompt that we feed to GPT-3. The prompt for Map2seq in-
structions is shown in Figure 8 and the one for Touchdown in
Figure 9. It provides five instructions texts paired with a list
of extracted landmarks as in-context examples. The example
landmark lists were compiled by hand and the same prompt
is used for each instance. There are no gold annotations for
extracted landmarks and as such no quantitative evaluation
is possible. In Figure 10 we show landmarks extracted by
GPT-3 using this prompt.

C Landmark Scorer
We show the CLIP score distribution and panorama views at
certain thresholds for additional landmarks in Figure 6.

D Finished Prompt Sequence
In Figure 7 we show a finished prompt sequence for a given
navigation instance. The agent predicted STOP at timestep
14 and thus finished the trajectory. In the depicted case the
agent followed the correct route and successfully completed
the navigation objective. For visualization purposes the tra-
jectory is shortened. On average the routes in Touchdown
and Map2seq require 40 steps to be completed. This also
means the agents has to evaluate 200 panorama views for
each navigation instance.
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Figure 6: Distribution of CLIP scores between a landmark
and panorama images in the training area. The CLIP score
represents the semantic similarity of the panorama image
and the text caption ”picture of [landmark]”. The distribution
is used to standardize the score of the landmark and a novel
panorama. The threshold τ is defined on the standardized
score and used to determine the visibility of the landmark in
the novel panorama image.

"Orientate yourself such that a blue bench is on your right, go 
to the end of the block and make a right. Follow the park on your 
left and make a right at the next intersection. Pass the black fire 
hydrant on your right and stop when you get to the gray door 
on the brown building."

There is a blue bench on your left.
1. turn_around
There is a blue bench on your right.
2. forward
3. forward
4. forward
There is a 3-way intersection.
5. right
6. forward
There is a park on your left.
7. forward
There is a park on your left.
8. forward
There is a park on your left.
9. forward
There is a 4-way intersection.
10. right
11. forward
There is a black fire hydrant slightly right.
12. forward
There is a black fire hydrant on your right.
13. forward
There is a gray door on the brown building on your left.
14. stop

Navigate to the described target location!

Action Space: forward, left, right, turn_around, stop

Navigation Instructions: 

Action Sequence:

Figure 7: Finished prompt sequence used to utilize LLMs for
VLN in Street View. Verbalized observations of the visual
environment are in green and appended to the prompt at each
step. Agent actions (blue) are acquired by LLM next word
prediction. Highlighting of text and shortening of route for
visual presentation only. Full navigation trajectories are on
average 40 steps long.



Intersection Path Environment by Chen et al. Our Environment

1

2

3 54

2→3→4 [FORWARD, LEFT, FORWARD] [FORWARD, LEFT, FORWARD]
2→3→5 [FORWARD, FORWARD] [FORWARD, RIGHT, FORWARD]

1

2

3

6

5

4

2→3→4 [FORWARD, LEFT, LEFT, FORWARD] [FORWARD, LEFT, FORWARD]
2→3→5 [FORWARD, LEFT, FORWARD] [FORWARD, FORWARD]
2→3→6 [FORWARD, FORWARD] [FORWARD, RIGHT, FORWARD]

1

2

5

4 3

6

7

2→3→4 [FORWARD, LEFT, LEFT, FORWARD] [FORWARD, LEFT, LEFT, FORWARD]
2→3→5 [FORWARD, LEFT, FORWARD] [FORWARD, LEFT, FORWARD]
2→3→6 [FORWARD, FORWARD] [FORWARD, RIGHT, FORWARD]
2→3→7 [FORWARD, RIGHT, FORWARD] [FORWARD, RIGHT, RIGHT, FORWARD]

Table 4: Comparison of the Touchdown environment implemented by Chen et al. (2019) and the improved implementation
proposed by us. The action sequence required to clear an intersection in different directions in our improved environment is
semantically aligned with the expected outcome.



Head to the end of the block and make a right. Pass a Subway entrance on the right and go through the light. At the next light with
Staples on the corner, make a right. Stop in front of the library that is a few buildings down on the right.
Landmarks:
1. a subway entrance
2. Staples
3. a library

Go straight through the light ahead of you, then turn right at the next one. After your turn, you will see Starbucks on the left.
At the light after that, turn left. Pass the church on the left and then stop after Hot Kitchen. You should be able to see a bike rental on
the right.
Landmarks:
1. Starbucks
2. a church
3. Hot Kitchen
4. a bike rental

Head to the intersection and turn left. Continue to the end of the block and turn right. Go straight and past the intersection.
Stop 1/3 of the way down the block with the large building on your right.
Landmarks:
None

Walk to the light with Just Sweet and turn right. Go through a light with an AMC and a couple more blocks until you see a
tiny park or plaza on the far left corner. Turn left passing that park and then make a left turn almost immediately after. Stop after a
couple of steps, where a road from the right joins the main road.
Landmarks:
1. Just Sweet
2. AMC
3. a park
4. a plaza

Go straight through the next 3 lights past the bus stops and at the 4th light shortly after the 3rd take a left. Stop just past the
bus stop and Neta diner.
Landmarks:
1. bus stop
2. Neta diner

{navigation instructions}
Landmarks:
<>

Figure 8: Prompt to extract landmarks from navigation instruction in Map2seq.



You will start of at an intersection. To begin, make sure you are going in the direction of the blue and white van with orange cones
around it. Pass that van. Go straight through the first intersection you get to. You will come to a light at an intersection where there is a
building with a green awning. Take a right. Go straight until you are in the middle of the intersection. In front of you, there is a building
with a red sign above the entrance.
Landmarks:
1. a blue and white van
2. orange cones
3. a green awning
4. a red sign above the entrance

Turn to the right until you’re looking down the street. There should be a red SUV on the right side of the frame now. Begin
moving forward until you reach an intersection. Take a left here. Keep moving forward until reaching a three-way intersection. Take
another left here. Move forward three times. Turn to the right until you see a red and white street sign next to a series of green boards.
Landmarks:
1. a red SUV
2. a red and white street sign
3. a series of green boards

Head in the direction of traffic and continue going straight. You will have the opportunity to turn right, but DON’T. Keep go-
ing straight. When you reach the intersection, turn left. Keep going straight. You will reach an intersection, but keep going straight. Just
before you reach the next intersection, you will see a bus stop on the right in front of a credit union.
Landmarks:
1. a bus stop
2. credit union

If you look around there should be a beige building on your right and a green awning. You want to head in the same direction
as the the red building with a staircase and a green awning if you check your surrounding. Make a left turn at the intersection when you
arrive. Follow the road until you reach another intersection. At this intersection make a left turn. You should be in an alley. If you go
up a few steps there should be a bicycle leaning on a tree. There should be a white car next to the bike. Up ahead at least one step is a
silver car and a light green car.
Landmarks:
1. beige building
2. green awning
3. a red building with a staircase and a green awning
4. a bicycle leaning on a tree
5. a white car next to the bike
6. a silver car
7. a light green car

Turn so your facing the intersection. You will take one step and be in the intersection. Turn Left, you will see some construc-
tion barriers on your left. Go one block and at the very next intersection go left again. Go about half a block or so and you will see
another orange barricade on your left. There will be some tarps covering construction stuff and scaffolding. At the beginning of the
barricade, there is an orange safety light.
Landmarks:
1. construction barriers
2. orange barricade
3. tarps covering construction stuff and scaffolding
4. orange safety light

{navigation instructions}
Landmarks:
<>

Figure 9: Prompt to extract landmarks from navigation instruction in Touchdown.



Map2seq:

Navigation Instructions (ID: 6197):

Head through the first intersection and at the next light make a right. Go past the next light and the Butcher Daughter will be on
the far left corner. At the next light make a left and stop in front of Kings Avenue Tattooing.

Extracted Landmarks: ”The Butcher Daughter”, ”Kings Avenue Tattooing”

Navigation Instructions (ID: 6205):

Head past the market and the cathedral and make a right at the light. At the next light with the Delicatessen on the corner make a
left. Stop in front of the fire hall.

Extracted Landmarks: ”a market”, ”a cathedral”, ”a Delicatessen”, ”a fire hall”

Navigation Instructions (ID: 6211):

Go to the end of the block and turn left. Pass More Parlour on the right and turn right at the lights. Go past the park on the left to
the lights and turn left and take two steps. Stop at Straus Square on the right before the bike rental.

Extracted Landmarks: ”More Parlour, ”a park”, ”Straus Square”, ”a bike rental”

Navigation Instructions (ID: 6227):

Turn right at the lights. Pass Spitzer’s Corner on the next left and turn left. Go down the long block and through the double set of
lights. Stop just before Farmhouse on the right corner.

Extracted Landmarks: ”Spitzer’s Corner”, ”Farmhouse”

Touchdown:
Navigation Instructions (ID: 546):

You’re going to go down the narrow street, not the big/main street here. Turn yourself so you’ve got that big mural of a guy with
nunchucks at your back, and you’re facing down the narrow street where you’ll go in the same direction the parked cars are
facing. Go down that street, and pass through the first intersection with the stop sign. At the second intersection, turn right. Go
until you’re nearly in the next intersection (right before you’d be standing on the crosswalk).

Extracted Landmarks: ”mural of a guy with nunchucks”, ”parked cars”, ”stop sign”, ”crosswalk”

Navigation Instructions (ID: 580):

You’re basically starting in an intersection. Move to the center of the intersection, and turn yourself so the restaurant with the
bright yellow awnings and sidewalk barriers is on your right side (you’ll pass it on your right as you walk down the street). Go
down that street, with the yellow restaurant on your right, and go to the next intersection. Turn right. Look at the buildings on
your right. A short way down the block you’ll come to a bar with a wood bench out front. There is also a red velvet rope near the
bench.

Extracted Landmarks: ”restaurant with bright yellow awnings and sidewalk barriers”, ”bar with a wood bench”, ”red
velvet rope”

Navigation Instructions (ID: 584):

Turn yourself around left so that you are going with the flow of traffic, there should be a green door on your right. Go forward
and make a right turn at the first intersection. There will be a black awning on your right. Continue forward. When you come to
the next intersection, make another right turn. As you get near the next intersection, you will see large red brick buildings on your
right. You will see a pallet of green sandbags sitting along the sidewalk.

Extracted Landmarks: ”green door black awning”, ”large red brick buildings”, ”pallet of green sandbags”

Figure 10: Landmarks extracted by GPT-3 using the 5-shot prompt for Map2seq and Touchdown.


